Ring Opening Reactions of Iminoaziridines and Aminoazirinium Ions. Is Electrocyclic Ring Opening of 2H‐Azirinium Ions a Myth?

Treatment of the 3,3-dimethyl-2-iminoaziridine 7 with hydrogen bromide yields similar amounts of the α-bromo amidine 10a · HBr and the α,β-unsaturated amidinium bromide 11. Ring opening reactions of the 3-tert-butyl-2-iminoaziridines 8 by nucleophiles (potassium methoxide, Pirkle's alcohol 13, and 4-nitrophenol) are sluggish affording the α-amino imidates 12, 14, and 15, respectively. Compound 15a isomerises via the Meisenheimer-type intermediate 16 to furnish the α-amino amide 17. Methyl triflate converts (R)-8 into the 2-tert-butyl-3-amino-2H-azirinium triflates (R)-18 which do not undergo racemisation as shown after hydrolysis to yield the α-amino amides (R)-20. In a similar sequence, (R)-8a and b are converted into the α-amino amides (R)-26 by the action of hydrogen halides or 4-toluenesulfonic acid hydrate followed by hydrolysis of the intermediate imidoyl derivatives (R)-24. Retention of configuration is observed after treatment of (R)-8a with hydrogen chloride and of (R)-8b with hydrogen bromide. Some racemisation found in the other cases is supposed to involve (R)-24 but not the aminoazirinium ions (R)-8 · HX. In a side reaction, 8a and b decompose into methyl isocyanide (22) and the imines 23 at low temperatures, probably under general acid catalysis. The results are not consistent with the hypothesis of an electrocyclic ring opening of 3-amino-2H-azirinium ions to afford 2-amino-1-azaallyl cations (= α-imino carbocations). – The heat of protonation of the parent compounds (E)-27, (Z)-27, 30 and the structures and energies of the resulting cations (E)-28, (Z)-28, 29, and 31 were calculated by ab initio methods. Complete geometry optimisations were performed with the RHF/6-31 + G** basis set. Energies were calculated on the RHF, MP2, MP4SDTQ, and CCSD(T) levels. According to the geometric parameters, the amidine delocalisation of the free bases is abondened in the cations (E)-28, (Z)-28, and 31 while it is considerably strengthened in 29. In accord with these geometric changes, 29 is by far the most stable protonated species followed by (E)- and (Z)-28. Azirine 31 is much higher in energy. The calculated difference in (gas phase) basicity between the two nitrogen atoms of iminoaziridines appears to exclude the ring-protonated cations as intermediates also for reactions in solution.

[1]  D. Hoover,et al.  NMR Chiral Solvating Agents , 2007 .

[2]  E. Würthwein,et al.  Synthesis and thermal reorganisations of iminoaziridines. Ab initio calculations of their transition states, of diazatrimethylenemethanes, and some cyclic members of the C2H4N2 potential-energy hypersurface† , 1995 .

[3]  You-Xiong Wang,et al.  .alpha.-Imino and .alpha.-Oximino Carbocations. A Comparison with .alpha.-Carbonyl and .alpha.-Thiocarbonyl Carbocations , 1995 .

[4]  E. Heller,et al.  Synthesis and Thermolysis of a Chiral, Non‐Racemic Iminoaziridine11 , 1994 .

[5]  Flavio Maran Electrochemical and stereochemical investigation on the mechanism of the decay of 2-halo amide anions. The intermediacy of aziridinones , 1993 .

[6]  X. Creary Electronegatively Substituted Carbocations , 1991 .

[7]  H. Quast,et al.  Stereochemie der Ringffnung von Aziridinonen (a-Lactamen) , 1991 .

[8]  H. Heimgartner 3‐Amino‐2H‐azirine, Bausteine für α,α‐disubstituierte α‐Aminosäuren in Heterocyclen‐ und Peptidsynthesen , 1991 .

[9]  H. Heimgartner 3-Amino-2H-Azirines. Synthons for α,α-Disubstituted α-Amino Acids in Heterocycle and Peptide Synthesis [New Analytical Methods (43)] , 1991 .

[10]  H. Quast,et al.  Synthese und Photolyse von 1,4,4‐Trialkyl ‐4,5‐dihydro‐5‐imino ‐1H‐1,2,3‐triazolen. — Regio‐ und diastereoselektive Bildung von (Z)‐Aziridiniminen , 1990 .

[11]  M. Pirrung,et al.  Diazotization of 1-aminocyclopropanecarboxylic acid. Solution chemistry of oxaspiropentanone , 1990 .

[12]  W. Sander Reaction of diphenylmethylene with carbon dioxide. Matrix isolation of diphenyloxiranone , 1989 .

[13]  H. Quast,et al.  Photolyse von 5‐Alkyliden‐1,4‐dihydro‐1,4‐dimethyl‐5H‐tetrazolen Diastereoselektive Bildung von (E)‐Aziridiniminen , 1988 .

[14]  Martin Head-Gordon,et al.  Quadratic configuration interaction. A general technique for determining electron correlation energies , 1987 .

[15]  Rodney L. Johnson,et al.  Synthesis and Chemical Properties of Tetrazole Peptide Analogues , 1987 .

[16]  R. Kellogg,et al.  Evidence for α‐lactone formation in the thioacetylation of some α‐hydroxy acids with the aid of Mitsunobu‐type reagent , 1987 .

[17]  D. Moderhack,et al.  Cycloaddition von N‐Aryl‐tert‐butylketeniminen an Nitrosobenzol sowie 2‐Methyl‐2‐nitrosopropan , 1986 .

[18]  S. Lacombe,et al.  2H-azirines en milieu acide formation et reactivite d'α-iminocarbeniums , 1986 .

[19]  J. Bourguignon,et al.  Reduction with N-benzyl-1,4 dihydronicotinamide. A reinvestigation. , 1986 .

[20]  A. Loupy,et al.  α-imino carbenium ions: Is the α-imino group really destabilizing? , 1985 .

[21]  P. Stang,et al.  Perfluoroalkanesulfonic Esters: Methods of Preparation and Applications in Organic Chemistry , 1982 .

[22]  A. F. Hegarty Stereospecific reactions of nitrilium ions and analogous 1,3-dipoles , 1980 .

[23]  G. L'abbé Heterocyclische Analoga von Methylencyclopropanen , 1980 .

[24]  G. L'abbé Heterocyclic Analogues of Methylenecyclopropanes , 1980 .

[25]  G. Alvernhe,et al.  Action de l'acide fluorhydrique sur les azirines : synthèse d'α-fluorocétones et de difluoroamines - étude de l'orientation de la réaction , 1980 .

[26]  H. Heimgartner 3-Amino-2H-azirine, Moleküle mit vielfältigen Reaktionsmöglichkeiten , 1979 .

[27]  H. Quast,et al.  Zur Herstellung von 2,2-Dimethylpropylamin und Tris-[2,2-dimethylpropyl]-amin , 1978 .

[28]  H. Heimgartner,et al.  Reaktionen von 3-Dimethylamino-2,2-dimethyl-2H-azirin mit Phenolen und Halogenaromaten , 1977 .

[29]  H. Quast,et al.  Thermische reorganisation von aziridiniminen , 1977 .

[30]  W. Walter,et al.  Ringöffnungsreaktionen der 3-Dialkylamino-2H-azirine mit Carbonsäurederivaten , 1975 .

[31]  H. Heimgartner,et al.  Addition of carboxylic acids and cyclic 1,3-diketones to 2-dimethylamino-3,3-dimethyl-1-azirine , 1974 .

[32]  J. Honzl,et al.  Reaction of t-butyl isocyanide with hydrogen chloride , 1970 .

[33]  L. Ghosez,et al.  Synthesis and reactions of 2-amino-1-azirines , 1970 .

[34]  I. Lengyel,et al.  α‐Lactame (Aziridinone) , 1968 .

[35]  I. Lengyel,et al.  α‐Lactams (Aziridinones) , 1968 .

[36]  W. Jentzsch N-Monosubstituierte Formamidchloride, II. Reaktionen und Spektren N.N′ -disubstituierter N-Dichlormethyl-formamidiniumchloride , 1964 .

[37]  E. Hughes,et al.  Configuration of Carbohydrates, Hydroxy-Acids and Amino-Acids: Configurations of Amino-Compounds and the Steric Course of Deamination , 1950, Nature.

[38]  E. Hughes,et al.  254. Reaction kinetics and the Walden inversion. Part III. Homogeneous hydrolysis and alcoholysis of α-bromopropionic acid, its ester and anion , 1937 .

[39]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[40]  J. Nef Ueber das zweiwerthige Kohlenstoffatom , 1892 .