The stress-free shape of the red blood cell membrane.

The two main proposals found in the literature for the stress-free shape of the red cell membrane are (a) the bioconcave shape and (b) the sphere of the same surface area. These possibilities are evaluated in this paper using theoretical modeling of equilibrium membrane shapes according to Zarda et al. (1977. J. Biomech. 10:211-221) and by comparison to experiments on red cells whose membrane shear modulus has been increased by treatment with diamide. Neither proposal is found to be compatible with all the experimental behaviour of native red cells. Neither proposal is found to be compatible with all the experimental behaviour of native red cells. To account for this discrepancy we propose that either the shear modulus of the native membrane is dependent on the membrane strain or that the bending stiffness is higher than estimated by Evans (1980. Biophys. J. 30:265-286). These studies suggest that the bioconcave disk is the more likely possibility for the stress-free shape.