Dynamics of continuous-time quantum walks in restricted geometries

We study quantum transport on finite discrete structures and we model the process by means of continuous-time quantum walks. A direct and effective comparison between quantum and classical walks can be attained based on the average displacement of the walker as a function of time. Indeed, a fast growth of the average displacement can be advantageously exploited to build up efficient search algorithms. By means of analytical and numerical investigations, we show that the finiteness and the inhomogeneity of the substrate jointly weaken the quantum-walk performance. We further highlight the interplay between the quantum-walk dynamics and the underlying topology by studying the temporal evolution of the transfer probability distribution and the lower bound of long-time averages.

[1]  Yue Yin,et al.  Quantum walks on a random environment , 2007, 0708.1137.

[2]  I Jex,et al.  Recurrence and Pólya number of quantum walks. , 2007, Physical review letters.

[3]  Roberto Morandotti,et al.  Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. , 2007, Physical review letters.

[4]  Inefficient quantum walks on networks: the role of the density of states , 2007, 0710.3453.

[5]  M. Weidemüller,et al.  Survival probabilities in coherent exciton transfer with trapping. , 2007, Physical review letters.

[6]  Volker Pernice,et al.  Quantum transport on small-world networks: a continuous-time quantum walk approach. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Frédéric Magniez,et al.  Search via quantum walk , 2006, STOC '07.

[8]  Quantum transport on two-dimensional regular graphs , 2006, quant-ph/0610212.

[9]  V. Bierbaum,et al.  Coherent dynamics on hierarchical systems , 2006, cond-mat/0610686.

[10]  Phillip L. Gould,et al.  Quantum random walk with Rydberg atoms in an optical lattice , 2006 .

[11]  F. Strauch Connecting the discrete- and continuous-time quantum walks , 2006, quant-ph/0606050.

[12]  G. Guo,et al.  Optical implementation of one-dimensional quantum random walks using orbital angular momentum of a single photon , 2006 .

[13]  Norio Konno,et al.  CONTINUOUS-TIME QUANTUM WALKS ON TREES IN QUANTUM PROBABILITY THEORY , 2006 .

[14]  A. Blumen,et al.  Efficiency of quantum and classical transport on graphs. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  N. Konno CONTINUOUS-TIME QUANTUM WALKS ON ULTRAMETRIC SPACES , 2006, quant-ph/0602070.

[16]  V. Bierbaum,et al.  Coherent exciton transport in dendrimers and continuous-time quantum walks. , 2006, The Journal of chemical physics.

[17]  R. Laflamme,et al.  Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor , 2005, quant-ph/0507267.

[18]  A. Blumen,et al.  Asymmetries in symmetric quantum walks on two-dimensional networks (9 pages) , 2005, quant-ph/0507198.

[19]  A. Blumen,et al.  Spacetime structures of continuous-time quantum walks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  H Germany,et al.  Spectral and diffusive properties of silver-mean quasicrystals in one, two, and three dimensions , 2004, cond-mat/0407762.

[21]  Andris Ambainis,et al.  Quantum search algorithms , 2004, SIGA.

[22]  Andrew M. Childs,et al.  Spatial search by quantum walk , 2003, quant-ph/0306054.

[23]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[24]  P. Knight,et al.  Quantum quincunx in cavity quantum electrodynamics , 2002, quant-ph/0207028.

[25]  W. Dur,et al.  Quantum walks in optical lattices , 2002, quant-ph/0207137.

[26]  Alexander Blumen,et al.  Multifractal spectra and the relaxation of model polymer networks , 2002 .

[27]  Colin P. Williams Quantum search algorithms in science and engineering , 2001, Comput. Sci. Eng..

[28]  Andris Ambainis,et al.  Quantum walks on graphs , 2000, STOC '01.

[29]  S. Havlin,et al.  Diffusion and Reactions in Fractals and Disordered Systems , 2000 .

[30]  M. Schreiber,et al.  Energy spectra, wave functions, and quantum diffusion for quasiperiodic systems , 1999, cond-mat/9912176.

[31]  J. Vidal,et al.  Spectrum and diffusion for a class of tight-binding models on hypercubes , 1998, cond-mat/9811323.

[32]  Gregory Bryan Computing in Science and Engineering , 1999, IEEE Software.

[33]  ScienceDirect Solid state sciences , 1999 .

[34]  E. Farhi,et al.  Quantum computation and decision trees , 1997, quant-ph/9706062.

[35]  Finite-size scaling for random walks on fractals , 1995 .

[36]  J. Douglas Aspects and applications of the random walk , 1995 .

[37]  Xiong,et al.  Quantum electron dynamics in periodic and aperiodic sequences. , 1995, Physical review. B, Condensed matter.

[38]  G. Weiss Aspects and Applications of the Random Walk , 1994 .

[39]  Aharonov,et al.  Quantum random walks. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[40]  M. Monastyrsky Topology of Condensed Matter , 1993 .

[41]  Kapral,et al.  Coupled maps on fractal lattices. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[42]  Minoru Toda,et al.  Springer Series in Solid-State Sciences , 1989 .

[43]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[44]  Tobias J. Hagge,et al.  Physics , 1929, Nature.