Multiobjective parameter estimation problems of fermentation processes using a high ethanol tolerance yeast

A multiobjective optimization approach is applied to estimate the kinetic model parameters of batch and fed-batch fermentation processes for ethanol production using Saccharomyces diastaticus (LORRE 316), which is a high ethanol tolerance yeast. Both batch and fed-batch experimental observations are simultaneously employed to formulate the parameter estimation problem. Consequently, the estimation problem becomes a multiobjective optimization problem. The hybrid differential evolution is introduced to solve the multiobjective parameter estimation problem to obtain a global Pareto solution. Optimality test is inferred in this study to guarantee to obtain the unique solution. Various experimental data obtained from a fermenter with the working volume of 5 L are used to evaluate the proposed method. The validated kinetic model could fit for both batch and fed-batch fermentation processes as observed from the experimental results.

[1]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[2]  J. M Brass,et al.  Application of modelling techniques for the improvement of industrial bioprocesses , 1997 .

[3]  Sandro Macchietto,et al.  The optimal design of dynamic experiments , 1989 .

[4]  Hirotaka Nakayama,et al.  Theory of Multiobjective Optimization , 1985 .

[5]  Ji-Pyng Chiou,et al.  Optimal control and optimal time location problems of differential-algebraic systems by differential evolution , 1997 .

[6]  Thomas F. Edgar,et al.  Robust error‐in‐variables estimation using nonlinear programming techniques , 1990 .

[7]  Rainer Storn,et al.  Minimizing the real functions of the ICEC'96 contest by differential evolution , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[8]  Matthias Reuss,et al.  Optimal Experimental Design for Parameter Estimation in Unstructured Growth Models , 1994 .

[9]  Christian Fonteix,et al.  Parameter estimation of a monod-type model. Part I: Theoretical identifiability and sensitivity analysis , 1994 .

[10]  Pramod Agrawal,et al.  A structured kinetic model for Zymomonas mobilis ATCC10988 , 1990, Biotechnology and bioengineering.

[11]  S. L. Ong Least‐squares estimation of batch culture kinetic parameters , 1983, Biotechnology and bioengineering.

[12]  J. Claes,et al.  Practical Identification of Unstructured Growth Kinetics by Application of Optimal Experimental Design , 1997 .

[13]  L Cazzador,et al.  Nonlinear estimation of specific growth rate for aerobic fermentation processes , 1995, Biotechnology and bioengineering.

[14]  Ji-Pyng Chiou,et al.  A hybrid method of differential evolution with application to optimal control problems of a bioprocess system , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[15]  Mondher Farza,et al.  Nonlinear observers for parameter estimation in bioprocesses , 1997 .

[16]  Lorenz T. Biegler,et al.  Nonlinear parameter estimation: A case study comparison , 1986 .

[17]  Maciej Starzak,et al.  Macroapproach kinetics of ethanol fermentation by Saccharomyces cerevisiae: experimental studies and mathematical modelling , 1994 .

[18]  G. T. Tsao,et al.  Fuzzy-Decision-Making Problems of Fuel Ethanol Production Using a Genetically Engineered Yeast , 1998 .