Composite Finite Elements for Elliptic Boundary Value Problems with Discontinuous Coefficients

In this paper, we will introduce composite finite elements for solving elliptic boundary value problems with discontinuous coefficients. The focus is on problems where the geometry of the interfaces between the smooth regions of the coefficients is very complicated.On the other hand, efficient numerical methods such as, e.g., multigrid methods, wavelets, extrapolation, are based on a multi-scale discretization of the problem. In standard finite element methods, the grids have to resolve the structure of the discontinuous coefficients. Thus, straightforward coarse scale discretizations of problems with complicated coefficient jumps are not obvious.In this paper, we define composite finite elements for problems with discontinuous coefficients. These finite elements allow the coarsening of finite element spaces independently of the structure of the discontinuous coefficients. Thus, the multigrid method can be applied to solve the linear system on the fine scale.We focus on the construction of the composite finite elements and the efficient, hierarchical realization of the intergrid transfer operators. Finally, we present some numerical results for the multigrid method based on the composite finite elements (CFE–MG).

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[3]  G Zappini,et al.  Finite element analysis of a glass fibre reinforced composite endodontic post. , 2002, Biomaterials.

[4]  T. Belytschko,et al.  Arbitrary branched and intersecting cracks with the eXtended Finite Element Method , 2000 .

[5]  T. S. Keller,et al.  Damage-based finite-element vertebroplasty simulations , 2004, European Spine Journal.

[6]  E. A. Repetto,et al.  Tetrahedral composite finite elements , 2002 .

[7]  R. LeVeque,et al.  Analysis of a one-dimensional model for the immersed boundary method , 1992 .

[8]  M. A. Hyman,et al.  Non-iterative numerical solution of boundary-value problems , 1952 .

[9]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[10]  Zhilin Li AN OVERVIEW OF THE IMMERSED INTERFACE METHOD AND ITS APPLICATIONS , 2003 .

[11]  C. M. Elliott,et al.  Fitted and Unfitted Finite-Element Methods for Elliptic Equations with Smooth Interfaces , 1987 .

[12]  P. Angot,et al.  A Fictitious domain approach with spread interface for elliptic problems with general boundary conditions , 2007 .

[13]  Olivier Pironneau,et al.  Optimal Shape Design , 2000 .

[14]  Tao Lin,et al.  New Cartesian grid methods for interface problems using the finite element formulation , 2003, Numerische Mathematik.

[15]  W H Harris,et al.  Limitations of the continuum assumption in cancellous bone. , 1988, Journal of biomechanics.

[16]  Zhilin Li The immersed interface method using a finite element formulation , 1998 .

[17]  Randall J. LeVeque,et al.  A Cartesian Grid Finite-Volume Method for the Advection-Diffusion Equation in Irregular Geometries , 2000 .

[18]  Zhilin Li,et al.  A note on immersed interface method for three-dimensional elliptic equations , 1996 .

[19]  N. Kikuchi,et al.  A comparison of homogenization and standard mechanics analyses for periodic porous composites , 1992 .

[20]  P Rüegsegger,et al.  Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions. , 1999, Journal of biomechanics.

[21]  W. Hackbusch,et al.  Composite finite elements for the approximation of PDEs on domains with complicated micro-structures , 1997 .

[22]  R. Glowinski,et al.  Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems , 2007 .

[23]  L. Gibson Biomechanics of cellular solids. , 2005, Journal of biomechanics.

[24]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[25]  Susan E. Minkoff,et al.  Operator Upscaling for the Acoustic Wave Equation , 2005, Multiscale Model. Simul..

[26]  Karol Miller,et al.  Brain Shift Computation Using a Fully Nonlinear Biomechanical Model , 2005, MICCAI.

[27]  J. Hyman,et al.  The Black Box Multigrid Numerical Homogenization Algorithm , 1998 .

[28]  R. Gulrajani The forward and inverse problems of electrocardiography. , 1998, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[29]  Ivo Babuška,et al.  Damage analysis of fiber composites Part I: Statistical analysis on fiber scale , 1999 .

[30]  I. Babuska,et al.  The generalized finite element method , 2001 .

[31]  Andreas Wiegmann,et al.  THE EXPLICIT JUMP IMMERSED INTERFACE METHOD: FINITE DIFFERENCE METHODS FOR PDE WITH PIECEWISE SMOOTH SOLUTIONS WE DEDICATE THIS WORK TO HELMUT ROHRL ON THE OCCASION OF HIS 70TH BIRTHDAY , 1997 .

[32]  Jonathan Richard Shewchuk,et al.  What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.

[33]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[34]  I. Babuska,et al.  Acta Numerica 2003: Survey of meshless and generalized finite element methods: A unified approach , 2003 .

[35]  Stefan A. Sauter,et al.  Two-scale composite finite element method for Dirichlet problems on complicated domains , 2006, Numerische Mathematik.

[36]  K. Stüben A review of algebraic multigrid , 2001 .

[37]  Ivo Babuska,et al.  The finite element method for elliptic equations with discontinuous coefficients , 1970, Computing.

[38]  S. Sauter,et al.  Extension operators and approximation on domains containing small geometric details , 1999 .

[39]  A. Brandt Methods of Systematic Upscaling , 2006 .

[40]  Jean-Herve Prevost,et al.  MODELING QUASI-STATIC CRACK GROWTH WITH THE EXTENDED FINITE ELEMENT METHOD PART II: NUMERICAL APPLICATIONS , 2003 .

[41]  A Simulation of the Abnormal EEG Morphology by the 3-D Finite Element Method , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[42]  Ivo Babuška,et al.  Generalized finite element methods for three-dimensional structural mechanics problems , 2000 .

[43]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[44]  John W. Barrett,et al.  A practical finite element approximation of a semi-definite Neumann problem on a curved domain , 1987 .

[45]  Ivo Babuska,et al.  Generalized p-FEM in homogenization , 2000, Numerische Mathematik.

[46]  W. Hackbusch,et al.  Composite finite elements for problems containing small geometric details , 1997 .

[47]  R-M Lin,et al.  Biomechanical investigation of pedicle screw-vertebrae complex: a finite element approach using bonded and contact interface conditions. , 2003, Medical engineering & physics.

[48]  Ernst Rank,et al.  Finite cell method , 2007 .

[49]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[50]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[51]  J. Sethian,et al.  Structural Boundary Design via Level Set and Immersed Interface Methods , 2000 .

[52]  William F. Mitchell,et al.  A comparison of adaptive refinement techniques for elliptic problems , 1989, TOMS.

[53]  C. Duarte,et al.  Arbitrarily smooth generalized finite element approximations , 2006 .

[54]  Doina Cioranescu,et al.  Homogenization of Reticulated Structures , 1999 .

[55]  Vasilis N. Burganos Computational methods in contamination and remediation of water resources , 1998 .

[56]  M. Le Ravalec,et al.  Upscaling: Effective Medium Theory, Numerical Methods and the Fractal Dream , 2006 .

[57]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[58]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[59]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[60]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[61]  G. P. Astrakhantsev Method of fictitious domains for a second-order elliptic equation with natural boundary conditions , 1978 .

[62]  Andrew H. Gee,et al.  Regularised marching tetrahedra: improved iso-surface extraction , 1999, Comput. Graph..

[63]  R.D. Falgout,et al.  An Introduction to Algebraic Multigrid Computing , 2006, Computing in Science & Engineering.

[64]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[65]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[66]  Ulrich Reif,et al.  Weighted Extended B-Spline Approximation of Dirichlet Problems , 2001, SIAM J. Numer. Anal..

[67]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[68]  John E. Osborn,et al.  Can a finite element method perform arbitrarily badly? , 2000, Math. Comput..

[69]  R. Huiskes,et al.  Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture. , 1996, Journal of biomechanics.

[70]  S J Hollister,et al.  A global relationship between trabecular bone morphology and homogenized elastic properties. , 1998, Journal of biomechanical engineering.

[71]  Richard E. Ewing,et al.  Numerical treatment of multiphase flows in porous media : proceedings of the international workshop, held at Beijing, China, 2-6 August 1999 , 2000 .

[72]  W. Hackbusch,et al.  Adaptive composite finite elements for the solution of PDEs containing non-uniformly distributed micro-scales , 1996 .

[73]  S. Goldstein,et al.  Application of homogenization theory to the study of trabecular bone mechanics. , 1991, Journal of biomechanics.

[74]  Kaitai Li,et al.  Current Trends in Scientific Computing , 2003 .

[75]  W. Hackbusch,et al.  A new finite element approach for problems containing small geometric details , 1998 .

[76]  T. Liszka,et al.  A generalized finite element method for the simulation of three-dimensional dynamic crack propagation , 2001 .

[77]  N. Frauböse,et al.  Composite Finite Elements and Multi-Grid Part I: Convergence Theory in 1-d , 2001 .

[78]  Ted Belytschko,et al.  Modelling crack growth by level sets in the extended finite element method , 2001 .

[79]  Klaus Höllig,et al.  Introduction to the Web-method and its applications , 2005, Adv. Comput. Math..

[80]  C. Schwab,et al.  Two-scale FEM for homogenization problems , 2002 .

[81]  Shang-Hua Teng,et al.  Unstructured Mesh Generation: Theory, Practice, and Perspectives , 2000, Int. J. Comput. Geom. Appl..

[82]  Ted Belytschko,et al.  Triangular composite finite elements , 2000 .

[83]  P. P. Starling The numerical solution of Laplace's equation , 1963 .

[84]  D FalgoutRobert An Introduction to Algebraic Multigrid , 2006 .

[85]  G. Bergmann,et al.  Spinal loads after osteoporotic vertebral fractures treated by vertebroplasty or kyphoplasty , 2006, European Spine Journal.

[86]  O. C. Zienkiewicz,et al.  A new cloud-based hp finite element method , 1998 .

[87]  Gabriel Wittum,et al.  Homogenization and Multigrid , 2001, Computing.

[88]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[89]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[90]  Zhilin Li,et al.  The Immersed Interface/Multigrid Methods for Interface Problems , 2002, SIAM J. Sci. Comput..