Best approximation property in the W1∞ norm for finite element methods on graded meshes

We consider finite element methods for a model second-order elliptic equation on a general bounded convex polygonal or polyhedral domain. Our first main goal is to extend the best approximation property of the error in the W 1 ∞ norm, which is known to hold on quasi-uniform meshes, to more general graded meshes. We accomplish it by a novel proof technique. This result holds under a condition on the grid which is mildly more restrictive than the shape regularity condition typically enforced in adaptive codes. The second main contribution of this work is a discussion of the properties of and relationships between similar mesh restrictions that have appeared in the literature.

[1]  A. H. Schatz,et al.  Interior estimates for Ritz-Galerkin methods , 1974 .

[2]  Joseph E. Pasciak,et al.  On the stability of the L2 projection in H1(Omega) , 2002, Math. Comput..

[3]  A. H. Schatz,et al.  Interior maximum-norm estimates for finite element methods, part II , 1995 .

[4]  Jinchao Xu,et al.  Local and parallel finite element algorithms for the stokes problem , 2008, Numerische Mathematik.

[5]  V. Thomée,et al.  The Stability in- L and W^ of the L2-Projection onto Finite Element Function Spaces , 2010 .

[6]  Ricardo H. Nochetto,et al.  AN ADAPTIVE FINITE ELEMENT METHOD FOR TWO-PHASE STEFAN PROBLEMS IN TWO SPACE DIMENSIONS. PART I: STABILITY AND ERROR ESTIMATES , 1991 .

[7]  Ricardo G. Durán,et al.  Maximum Norm Error Estimators for Three-Dimensional Elliptic Problems , 1999, SIAM J. Numer. Anal..

[8]  L. Ridgway Scott,et al.  Variational formulation of a model free-boundary problem , 1991 .

[9]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[10]  Alfred H. Schatz Maximum Norm Error Estimates for the Finite Element Method Allowing Highly Refined Grids , 2005 .

[11]  Stephen J. Fromm,et al.  Potential space estimates for Green potentials in convex domains , 1993 .

[12]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[13]  L. Wahlbin,et al.  Local behavior in finite element methods , 1991 .

[14]  Vidar Thomée,et al.  Maximum-norm resolvent estimates for elliptic finite element operators on nonquasiuniform triangulations , 2006 .

[15]  Reinhard Scholz A mixed method for 4th order problems using linear finite elements , 1978 .

[16]  Alan Demlow,et al.  Convergence and quasi-optimality of an adaptive finite element method for controlling L2 errors , 2011, Numerische Mathematik.

[17]  Rolf Rannacher,et al.  Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .

[18]  Carsten Carstensen,et al.  Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for H1-stability of the L2-projection onto finite element spaces , 2002, Math. Comput..

[19]  A. H. Schatz,et al.  Maximum norm estimates in the finite element method on plane polygonal domains. II. Refinements , 1979 .

[20]  Alan Demlow,et al.  Sharply localized pointwise and W∞-1 estimates for finite element methods for quasilinear problems , 2007, Math. Comput..

[21]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[22]  Kenneth Eriksson,et al.  AN ADAPTIVE FINITE ELEMENT METHOD WITH EFFICIENT MAXIMUM NORM ERROR CONTROL FOR ELLIPTIC PROBLEMS , 1994 .

[23]  Michael Grüter,et al.  The Green function for uniformly elliptic equations , 1982 .

[24]  Ricardo H. Nochetto,et al.  Pointwise a posteriori error estimates for elliptic problems on highly graded meshes , 1995 .

[25]  Vidar Thomée,et al.  Maximum-norm estimates for resolvents of elliptic finite element operators , 2003, Math. Comput..

[26]  Jinchao Xu,et al.  Local and parallel finite element algorithms based on two-grid discretizations , 2000, Math. Comput..

[27]  Michael Hinze,et al.  Convergence of a Finite Element Approximation to a State-Constrained Elliptic Control Problem , 2007, SIAM J. Numer. Anal..

[28]  V. Thomée,et al.  The stability in _{} and ¹_{} of the ₂-projection onto finite element function spaces , 1987 .

[29]  Alfred H. Schatz,et al.  Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids: Part I. Global estimates , 1998, Math. Comput..

[30]  Jürgen Roßmann,et al.  Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods , 2009, Numerische Mathematik.

[31]  I. Babuška,et al.  Analysis of finite element methods for second order boundary value problems using mesh dependent norms , 1980 .

[32]  A. H. Schatz,et al.  Maximum norm estimates in the finite element method on plane polygonal domains. I , 1978 .

[33]  J. Douglas,et al.  A Galerkin method for a nonlinear Dirichlet problem , 1975 .

[34]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[35]  Alan Demlow,et al.  Local energy estimates for the finite element method on sharply varying grids , 2008, Math. Comput..

[36]  Arnd Rösch,et al.  LINFINITY-Error Estimates on Graded Meshes with Application to Optimal Control , 2009, SIAM J. Control. Optim..

[37]  Giovanni Paolo Galdi,et al.  Linearized steady problems , 1994 .

[38]  Alan Demlow,et al.  Localized pointwise a posteriori error estimates for gradients of piecewise linear finite element approximations to second-order quasilinear elliptic problems , 2006, SIAM J. Numer. Anal..

[39]  G. Galdi An Introduction to the Mathematical Theory of the Navier-Stokes Equations : Volume I: Linearised Steady Problems , 1994 .