Novel insights into small open reading frame-encoded micropeptides in hepatocellular carcinoma: A potential breakthrough.

[1]  Sarah A. Slavoff,et al.  Microproteins—Discovery, structure, and function , 2023, Proteomics.

[2]  Kun Zhang,et al.  Small Open Reading Frame-Encoded Micro-Peptides: An Emerging Protein World , 2023, International journal of molecular sciences.

[3]  W. Jin,et al.  Hypoxia-responsive lncRNA AC115619 encodes a micropeptide that suppresses m6A modifications and hepatocellular carcinoma progression. , 2023, Cancer research.

[4]  Catherine A. Makarewich,et al.  Microproteins: Overlooked regulators of physiology and disease , 2023, iScience.

[5]  S. Roessler,et al.  Hypoxia-responsive PPARGC1A/BAMBI/ACSL5 axis promotes progression and resistance to lenvatinib in hepatocellular carcinoma , 2023, Oncogene.

[6]  Yufeng Yuan,et al.  ncRNA-mediated fatty acid metabolism reprogramming in HCC , 2023, Trends in Endocrinology & Metabolism.

[7]  Ze Xiang,et al.  Radiomics in the diagnosis and treatment of hepatocellular carcinoma. , 2023, Hepatobiliary & pancreatic diseases international : HBPD INT.

[8]  Hengyu Li,et al.  M6A-mediated upregulation of FZD10 regulates liver cancer stem cells properties and lenvatinib resistance through WNT/β-catenin and Hippo signaling pathways. , 2023, Gastroenterology.

[9]  Xinye Ni,et al.  LncCat: An ORF attention model to identify LncRNA based on ensemble learning strategy and fused sequence information , 2023, Computational and structural biotechnology journal.

[10]  Jian Zhou,et al.  A review of 2022 Chinese clinical guidelines on the management of hepatocellular carcinoma: updates and insights , 2023, Hepatobiliary surgery and nutrition.

[11]  Jia Fan,et al.  Clinical practice guidelines and real-life practice in hepatocellular carcinoma: A Chinese perspective , 2022, Clinical and molecular hepatology.

[12]  Yingting Zhang,et al.  Emerging role of aging in the progression of NAFLD to HCC , 2022, Ageing Research Reviews.

[13]  R. Gregory,et al.  Ribo-uORF: a comprehensive data resource of upstream open reading frames (uORFs) based on ribosome profiling , 2022, Nucleic Acids Res..

[14]  Xiangwei Gao,et al.  Discovery of the hidden coding information in cancers: Mechanisms and biological functions , 2022, International journal of cancer.

[15]  Z. Liao,et al.  A micropeptide JunBP regulated by TGF-β promotes hepatocellular carcinoma metastasis , 2022, Oncogene.

[16]  Hui Zhang,et al.  A 66 amino acid micro-peptide encoded by long non-coding RNA RP11-119F7.5 was identified in hepatocellular carcinoma , 2022, Journal of Bio-X Research.

[17]  H. Cortez‐Pinto,et al.  Global epidemiology of alcohol-associated cirrhosis and HCC: trends, projections and risk factors , 2022, Nature reviews. Gastroenterology & hepatology.

[18]  Qianqian Wang,et al.  Probing the sORF-Encoded Peptides of Deinococcus radiodurans in Response to Extreme Stress , 2022, Molecular & cellular proteomics : MCP.

[19]  P. Jiang,et al.  Tracing Translational Footprint by Ribo-Seq: Principle, Workflow, and Applications to Understand the Mechanism of Human Diseases , 2022, Cells.

[20]  M. Ladanyi,et al.  SRC Family Kinase Inhibition Targets YES1 and YAP1 as Primary Drivers of Lung Cancer and as Mediators of Acquired Resistance to ALK and Epidermal Growth Factor Receptor Inhibitors , 2022, JCO precision oncology.

[21]  Zu-Jiang Yu,et al.  The latest research progress on minimally invasive treatments for hepatocellular carcinoma. , 2022, Hepatobiliary & pancreatic diseases international : HBPD INT.

[22]  Susan B. Carpenter,et al.  Short open reading frame genes in innate immunity: from discovery to characterization. , 2022, Trends in immunology.

[23]  A. Calvo,et al.  YES1: a novel therapeutic target and biomarker in cancer. , 2022, Molecular cancer therapeutics.

[24]  Rong Ma,et al.  Functional Micropeptides Encoded by Long Non-Coding RNAs: A Comprehensive Review , 2022, Frontiers in Molecular Biosciences.

[25]  B. Chen,et al.  Mitochondrial micropeptide STMP1 enhances mitochondrial fission to promote tumor metastasis. , 2022, Cancer research.

[26]  D. Craik,et al.  Cancer-related micropeptides encoded by ncRNAs: Promising drug targets and prognostic biomarkers. , 2022, Cancer letters.

[27]  Shi‐Mei Zhuang,et al.  Mitochondrial micropeptide STMP1 promotes G1/S transition by enhancing mitochondrial complex IV activity. , 2022, Molecular therapy : the journal of the American Society of Gene Therapy.

[28]  C. Dozier,et al.  Functions of animal microRNA‐encoded peptides: the race is on! , 2022, EMBO Reports.

[29]  T. Low,et al.  Short open reading frames (sORFs) and microproteins: an update on their identification and validation measures , 2022, Journal of biomedical science.

[30]  Xinqiang Yin,et al.  Micropeptides Identified from Human Genomes. , 2022, Journal of proteome research.

[31]  Lifen Gao,et al.  Upregulation of TIPE1 in tubular epithelial cell aggravates diabetic nephropathy by disrupting PHB2 mediated mitophagy , 2022, Redox biology.

[32]  Aifu Lin,et al.  Micropeptides translated from putative long non-coding RNAs , 2022, Acta biochimica et biophysica Sinica.

[33]  Katja Baerenfaller,et al.  Translation and emerging functions of non‐coding RNAs in inflammation and immunity , 2022, Allergy.

[34]  T. Tamura,et al.  Identification of Novel Micropeptides Derived from Hepatocellular Carcinoma-Specific Long Noncoding RNA , 2021, International journal of molecular sciences.

[35]  Seok-Geun Lee,et al.  Ribosomal Protein S6: A Potential Therapeutic Target against Cancer? , 2021, International journal of molecular sciences.

[36]  Ruifu Yang,et al.  Proteogenomic discovery of sORF-encoded peptides associated with bacterial virulence in Yersinia pestis , 2021, Communications Biology.

[37]  A. Porcelli,et al.  Respiratory Complex I dysfunction in cancer: from a maze of cellular adaptive responses to potential therapeutic strategies , 2021, The FEBS journal.

[38]  Liangjing Wang,et al.  Micropeptide ASAP encoded by LINC00467 promotes colorectal cancer progression by directly modulating ATP synthase activity. , 2021, The Journal of clinical investigation.

[39]  P. Galle,et al.  NAFLD-driven HCC: Safety and efficacy of current and emerging treatment options. , 2021, Journal of hepatology.

[40]  Wei Zhang,et al.  Down-regulation of a Mitochondrial Micropeptide MPM Promotes Hepatoma Metastasis by Enhancing Mitochondrial Complex I Activity. , 2021, Molecular therapy : the journal of the American Society of Gene Therapy.

[41]  Xiujun Cai,et al.  Circular RNAs: characteristics, biogenesis, mechanisms and functions in liver cancer , 2021, Journal of Hematology & Oncology.

[42]  Zhe Li,et al.  Translation role of circRNAs in cancers , 2021, Journal of clinical laboratory analysis.

[43]  Cuihong Wan,et al.  Improved Identification of Small Open Reading Frames Encoded Peptides by Top-Down Proteomic Approaches and De Novo Sequencing , 2021, International journal of molecular sciences.

[44]  Jun Liu,et al.  Modulation of the rat angiotensin type 1a receptor by an upstream short open reading frame , 2021, Peptides.

[45]  Zhi Xie,et al.  riboCIRC: a comprehensive database of translatable circRNAs , 2021, Genome Biology.

[46]  Chang Liu,et al.  Cellular senescence in hepatocellular carcinoma induced by a long non-coding RNA-encoded peptide PINT87aa by blocking FOXM1-mediated PHB2 , 2021, Theranostics.

[47]  T. Tamura,et al.  C20orf204, a hepatocellular carcinoma-specific protein interacts with nucleolin and promotes cell proliferation , 2021, Oncogenesis.

[48]  S. Elsässer,et al.  Revisiting sORFs: overcoming challenges to identify and characterize functional microproteins , 2021, The FEBS journal.

[49]  A. Jemal,et al.  Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries , 2021, CA: a cancer journal for clinicians.

[50]  J. Yi,et al.  The biology, function, and applications of exosomes in cancer , 2021, Acta pharmaceutica Sinica. B.

[51]  Z. Huang,et al.  Chinese expert consensus on conversion therapy for hepatocellular carcinoma (2021 edition). , 2021, Hepatobiliary surgery and nutrition.

[52]  V. Tergaonkar,et al.  sORF-Encoded MicroPeptides: New players in inflammation, metabolism, and precision medicine. , 2020, Cancer letters.

[53]  Zhaoyuan Fang,et al.  TransCirc: an interactive database for translatable circular RNAs based on multi-omics evidence , 2020, Nucleic Acids Res..

[54]  K. Dong,et al.  Emerging role of long noncoding RNA-encoded micropeptides in cancer , 2020, Cancer cell international.

[55]  Xiangdong Liu,et al.  ndufa7 plays a critical role in cardiac hypertrophy , 2020, Journal of cellular and molecular medicine.

[56]  Wen Zhang,et al.  Predicting Coding Potential of RNA Sequences by Solving Local Data Imbalance , 2020, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[57]  C S Casimiro-Soriguer,et al.  Using AnABlast for intergenic sORF prediction in the Caenorhabditis elegans genome , 2020, Bioinform..

[58]  Chuanbin Mao,et al.  Peptide SMIM30 promotes HCC development by inducing SRC/YES1 membrane anchoring and MAPK pathway activation. , 2020, Journal of hepatology.

[59]  M. Kang,et al.  5'-UTR and ORF elements, as well as the 3'-UTR regulate the translation of Cyclin. , 2020, Biochemical and biophysical research communications.

[60]  S. Weinberg,et al.  Mitochondrial ubiquinol oxidation is necessary for tumor growth , 2020, Nature.

[61]  Qing‐Yu He,et al.  Understanding the proteome encoded by “non-coding RNAs”: new insights into human genome , 2020, Science China Life Sciences.

[62]  Weifeng He,et al.  The role of long noncoding RNAs in hepatocellular carcinoma , 2020, Molecular Cancer.

[63]  Yifeng Zhou,et al.  A Novel Micropeptide Encoded by Y-Linked LINC00278 Links Cigarette Smoking and AR Signaling in Male Esophageal Squamous Cell Carcinoma , 2020, Cancer Research.

[64]  L. Désaubry,et al.  PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis , 2020, Autophagy.

[65]  P. Galle,et al.  Diagnosis and management of toxicities of immune checkpoint inhibitors in hepatocellular carcinoma. , 2020, Journal of hepatology.

[66]  A. Lal,et al.  When Long Noncoding Becomes Protein Coding , 2020, Molecular and Cellular Biology.

[67]  Cang Li,et al.  RPS27, a sORF-Encoded Polypeptide, Functions Antivirally by Activating the NF-κB Pathway and Interacting With Viral Envelope Proteins in Shrimp , 2019, Front. Immunol..

[68]  Yifeng Zhou,et al.  Micropeptide CIP2A‐BP encoded by LINC00665 inhibits triple‐negative breast cancer progression , 2019, The EMBO journal.

[69]  M. Blanchette,et al.  Upstream ORF-encoded ASDURF is a novel prefoldin-like subunit of the PAQosome. , 2019, Journal of proteome research.

[70]  Tian-Cai Liu,et al.  Translated Long Non-Coding Ribonucleic Acid ZFAS1 Promotes Cancer Cell Migration by Elevating Reactive Oxygen Species Production in Hepatocellular Carcinoma , 2019, Front. Genet..

[71]  Maxim N. Shokhirev,et al.  Accurate annotation of human protein-coding small open reading frames , 2019, Nature Chemical Biology.

[72]  Haiyang Xie,et al.  WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1 , 2019, Molecular Cancer.

[73]  J. Gingold,et al.  Immunomodulatory TGF-β Signaling in Hepatocellular Carcinoma. , 2019, Trends in molecular medicine.

[74]  J. Goncalves,et al.  Nucleolin-based targeting strategies for cancer therapy: from targeted drug delivery to cytotoxic ligands. , 2019, Drug discovery today.

[75]  Catherine L. Worth,et al.  The Translational Landscape of the Human Heart , 2019, Cell.

[76]  Jianhua Yang,et al.  Ribosome profiling analysis identified a KRAS-interacting microprotein that represses oncogenic signaling in hepatocellular carcinoma cells , 2019, Science China Life Sciences.

[77]  Seo-Won Choi,et al.  The small peptide world in long noncoding RNAs , 2019, Briefings Bioinform..

[78]  Bin Xu,et al.  A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling , 2019, Molecular Cancer.

[79]  K. Lu,et al.  Endoplasmic reticulum stress triggers Xanthoangelol-induced protective autophagy via activation of JNK/c-Jun Axis in hepatocellular carcinoma , 2019, Journal of Experimental & Clinical Cancer Research.

[80]  A. Pillai,et al.  Goals and targets for personalized therapy for HCC , 2019, Hepatology International.

[81]  A. Cervantes,et al.  NRF2 through RPS6 Activation Is Related to Anti-HER2 Drug Resistance in HER2-Amplified Gastric Cancer , 2018, Clinical Cancer Research.

[82]  Gong Zhang,et al.  A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma , 2018, Nature Communications.

[83]  R. Lai,et al.  Targeting surface nucleolin induces autophagy-dependent cell death in pancreatic cancer via AMPK activation , 2018, Oncogene.

[84]  Jeffrey A. Hussmann,et al.  Ribosome Profiling: Global Views of Translation. , 2018, Cold Spring Harbor perspectives in biology.

[85]  Audrey M. Michel,et al.  The GWIPS‐viz Browser , 2018, Current protocols in bioinformatics.

[86]  Ana C. Gregório,et al.  Meeting the needs of breast cancer: A nucleolin's perspective. , 2018, Critical reviews in oncology/hematology.

[87]  T. Yada,et al.  Micropeptides Encoded in Transcripts Previously Identified as Long Noncoding RNAs: A New Chapter in Transcriptomics and Proteomics , 2018, Front. Genet..

[88]  Ralf Zimmer,et al.  Improved Ribo-seq enables identification of cryptic translation events , 2018, Nature Methods.

[89]  Gerben Menschaert,et al.  An update on sORFs.org: a repository of small ORFs identified by ribosome profiling , 2017, Nucleic Acids Res..

[90]  Gong Zhang,et al.  TranslatomeDB: a comprehensive database and cloud-based analysis platform for translatome sequencing data , 2017, Nucleic Acids Res..

[91]  De Chen,et al.  A Peptide Encoded by a Putative lncRNA HOXB-AS3 Suppresses Colon Cancer Growth. , 2017, Molecular cell.

[92]  Audrey M. Michel,et al.  GWIPS-viz: 2018 update , 2017, Nucleic Acids Res..

[93]  E. Olson,et al.  Mining for Micropeptides. , 2017, Trends in cell biology.

[94]  Ge Gao,et al.  CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features , 2017, Nucleic Acids Res..

[95]  P. Cohen,et al.  MOTS-c: A novel mitochondrial-derived peptide regulating muscle and fat metabolism. , 2016, Free radical biology & medicine.

[96]  Petra Koudelkova,et al.  Role of epithelial to mesenchymal transition in hepatocellular carcinoma. , 2016, Journal of hepatology.

[97]  Chris M. Brown,et al.  The Emerging World of Small ORFs. , 2016, Trends in plant science.

[98]  Jiao Ma,et al.  Identification and characterization of sORF-encoded polypeptides , 2015, Critical reviews in biochemistry and molecular biology.

[99]  H. Toyoda,et al.  Tumor Markers for Hepatocellular Carcinoma: Simple and Significant Predictors of Outcome in Patients with HCC , 2015, Liver Cancer.

[100]  P. Poulikakos,et al.  Targeting RAS–ERK signalling in cancer: promises and challenges , 2014, Nature Reviews Drug Discovery.

[101]  Sanghyuk Lee,et al.  lncRNAtor: a comprehensive resource for functional investigation of long non-coding RNAs , 2014, Bioinform..

[102]  Andrea Glasauer,et al.  Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis , 2014, eLife.

[103]  P. Greengard,et al.  Cell type–specific mRNA purification by translating ribosome affinity purification (TRAP) , 2014, Nature Protocols.

[104]  Joseph A. Rothnagel,et al.  Emerging evidence for functional peptides encoded by short open reading frames , 2014, Nature Reviews Genetics.

[105]  J. Rinn,et al.  Ribosome profiling reveals resemblance between long non-coding RNAs and 5′ leaders of coding RNAs , 2013, Development.

[106]  Audrey M. Michel,et al.  Ribosome profiling: a Hi-Def monitor for protein synthesis at the genome-wide scale , 2013, Wiley interdisciplinary reviews. RNA.

[107]  J. Kocher,et al.  CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model , 2013, Nucleic acids research.

[108]  B. Shen,et al.  Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution , 2012, Proceedings of the National Academy of Sciences.

[109]  R. Aebersold,et al.  Selected reaction monitoring–based proteomics: workflows, potential, pitfalls and future directions , 2012, Nature Methods.

[110]  Ruedi Aebersold,et al.  Options and considerations when selecting a quantitative proteomics strategy , 2010, Nature Biotechnology.

[111]  K. Shinozaki,et al.  sORF finder: a program package to identify small open reading frames with high coding potential , 2010, Bioinform..

[112]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[113]  Yong Zhang,et al.  CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine , 2007, Nucleic Acids Res..

[114]  S. Johnston,et al.  ORF-FINDER: a vector for high-throughput gene identification. , 2002, Gene.

[115]  OUP accepted manuscript , 2022, Briefings in Bioinformatics.