Gas phase vibrational spectroscopy of the protonated water pentamer: the role of isomers and nuclear quantum effects.

We use cryogenic ion trap vibrational spectroscopy to study the structure of the protonated water pentamer, H+(H2O)5, and its fully deuterated isotopologue, D+(D2O)5, over nearly the complete infrared spectral range (220-4000 cm-1) in combination with harmonic and anharmonic electronic structure calculations as well as RRKM modelling. Isomer-selective IR-IR double-resonance measurements on the H+(H2O)5 isotopologue establish that the spectrum is due to a single constitutional isomer, thus discounting the recent analysis of the band pattern in the context of two isomers based on AIMD simulations 〈W. Kulig and N. Agmon, Phys. Chem. Chem. Phys., 2014, 16, 4933-4941〉. The evolution of the persistent bands in the D+(D2O)5 cluster allows the assignment of the fundamentals in the spectra of both isotopologues, and the simpler pattern displayed by the heavier isotopologue is consistent with the calculated spectrum for the branched, Eigen-based structure originally proposed 〈J.-C. Jiang, et al., J. Am. Chem. Soc., 2000, 122, 1398-1410〉. This pattern persists in the vibrational spectra of H+(H2O)5 in the temperature range from 13 K up to 250 K. The present study also underscores the importance of considering nuclear quantum effects in predicting the kinetic stability of these isomers at low temperatures.

[1]  Aritra Mandal,et al.  Ultrafast 2D IR spectroscopy of the excess proton in liquid water , 2015, Science.

[2]  S. D. Ivanov,et al.  Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated. , 2015, The Journal of chemical physics.

[3]  Mark A. Johnson,et al.  Snapshots of Proton Accommodation at a Microscopic Water Surface: Understanding the Vibrational Spectral Signatures of the Charge Defect in Cryogenically Cooled H(+)(H2O)(n=2-28) Clusters. , 2015, The journal of physical chemistry. A.

[4]  M. Fagiani,et al.  Disentangling the Contribution of Multiple Isomers to the Infrared Spectrum of the Protonated Water Heptamer. , 2015, The journal of physical chemistry letters.

[5]  Alan M. M. Todd,et al.  The new IR and THz FEL facility at the Fritz Haber Institute in Berlin , 2015, Europe Optics + Optoelectronics.

[6]  K. Asmis,et al.  Cryogenic ion trap vibrational spectroscopy of hydrogen-bonded clusters relevant to atmospheric chemistry , 2015 .

[7]  W. Kulig,et al.  Deciphering the infrared spectrum of the protonated water pentamer and the hybrid Eigen-Zundel cation. , 2014, Physical chemistry chemical physics : PCCP.

[8]  Mark A. Johnson,et al.  Cryogenic ion chemistry and spectroscopy. , 2014, Accounts of chemical research.

[9]  W. Kulig,et al.  Both Zundel and Eigen isomers contribute to the IR spectrum of the gas-phase H9O4+ cluster. , 2014, The journal of physical chemistry. B.

[10]  S. D. Ivanov,et al.  Theoretical spectroscopy using molecular dynamics: theory and application to CH5(+) and its isotopologues. , 2013, Physical chemistry chemical physics : PCCP.

[11]  V. Blum,et al.  Isomer-selective detection of hydrogen-bond vibrations in the protonated water hexamer. , 2013, Journal of the American Chemical Society.

[12]  A. Fujii,et al.  Tuning of the internal energy and isomer distribution in small protonated water clusters H(+)(H2O)(4-8): an application of the inert gas messenger technique. , 2012, The journal of physical chemistry. A.

[13]  V. Barone,et al.  A second-order perturbation theory route to vibrational averages and transition properties of molecules: general formulation and application to infrared and vibrational circular dichroism spectroscopies. , 2012, The Journal of chemical physics.

[14]  A. Chandra,et al.  A first principles theoretical study of the hydration structure and dynamics of an excess proton in water clusters of varying size and temperature , 2011 .

[15]  B. Braams,et al.  Ab-Initio-Based Potential Energy Surfaces for Complex Molecules and Molecular Complexes , 2010 .

[16]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[17]  K. Jordan,et al.  Infrared spectroscopy of small protonated water clusters, H(+)(H2O)n (n = 2-5): isomers, argon tagging, and deuteration. , 2010, The journal of physical chemistry. A.

[18]  H. Meyer,et al.  Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water-dimer III: Mixed Jacobi-valence parametrization and benchmark results for the zero point energy, vibrationally excited states, and infrared spectrum. , 2009, The Journal of chemical physics.

[19]  D. Neumark,et al.  Infrared spectroscopy of the microhydrated nitrate ions NO(3)(-)(H2O)(1-6). , 2009, The journal of physical chemistry. A.

[20]  A. McCoy,et al.  IR spectroscopy and theory of Cu+(H2O)Ar2 and Cu+(D2O)Ar2 in the O-H (O-D) stretching region: fundamentals and combination bands. , 2009, The journal of physical chemistry. A.

[21]  K. Asmis,et al.  Messenger-tagging electrosprayed ions: vibrational spectroscopy of suberate dianions. , 2009, The journal of physical chemistry. A.

[22]  K. Asmis,et al.  10 K Ring Electrode Trap—Tandem Mass Spectrometer for Infrared Spectroscopy of Mass Selected Ions , 2009 .

[23]  Mark A. Johnson,et al.  Isolating the spectra of cluster ion isomers using Ar-"tag" -mediated IR-IR double resonance within the vibrational manifolds: Application to NO2- *H2O. , 2008, The Journal of chemical physics.

[24]  H. Meyer,et al.  Dynamics and infrared spectroscopy of the protonated water dimer. , 2007, Angewandte Chemie.

[25]  Evgeniy M. Myshakin,et al.  Spectral Signatures of Hydrated Proton Vibrations in Water Clusters , 2005, Science.

[26]  Jer-Lai Kuo,et al.  Structure of protonated water clusters: low-energy structures and finite temperature behavior. , 2005, The Journal of chemical physics.

[27]  K. Asmis,et al.  Formation and photodepletion of cluster ion–messenger atom complexes in a cold ion trap: Infrared spectroscopy of VO+, VO+2, and VO+3 , 2003 .

[28]  Sean C. Smith Unimolecular Reaction Dynamics , 2002 .

[29]  K. Jordan,et al.  Theoretical Investigation of the H3O+(H2O)4 Cluster , 2001 .

[30]  David J. Wales,et al.  Global minima of protonated water clusters , 2000 .

[31]  Huan-Cheng Chang,et al.  Infrared Spectra of H+(H2O)5-8 Clusters: Evidence for Symmetric Proton Hydration , 2000 .

[32]  Leo Radom,et al.  Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors , 1996 .

[33]  M. Parrinello,et al.  AB INITIO PATH INTEGRAL MOLECULAR DYNAMICS : BASIC IDEAS , 1996 .

[34]  G. Corongiu,et al.  Theoretical Studies of H+(H2O)5 , 1995 .

[35]  W. R. Bosenberg,et al.  Broadly tunable, single-frequency optical parametric frequency-conversion system , 1993 .

[36]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[37]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[38]  H. Bernhard Schlegel,et al.  Reaction Path Following in Mass-Weighted Internal Coordinates , 1990 .

[39]  H. Bernhard Schlegel,et al.  An improved algorithm for reaction path following , 1989 .

[40]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[41]  W. Forst Test of Laplace transform inversion of unimolecular rate constant , 1982 .

[42]  A. D. McLean,et al.  Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 , 1980 .

[43]  Terry Beyer,et al.  Algorithm 448: number of multiply-restricted partitions , 1973, CACM.

[44]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[45]  W. Hase,et al.  Unimolecular reaction dynamics : theory and experiments , 1996 .

[46]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .