On the Tunable Sparse Graph Solver for Pose Graph Optimization in Visual SLAM Problems

We report a tunable sparse optimization solver that can trade a slight decrease in accuracy for significant speed improvement in pose graph optimization in visual simultaneous localization and mapping (vSLAM). The solver is designed for devices with significant computation and power constraints such as mobile phones or tablets. Two approaches have been combined in our design. The first is a graph pruning strategy by exploiting objective function structure to reduce the optimization problem size which further sparsifies the optimization problem. The second step is to accelerate each optimization iteration in solving increments for the gradient-based search in Gauss-Newton type optimization solver. We apply a modified Cholesky factorization and reuse the decomposition result from last iteration by using Cholesky update/downdate to accelerate the computation. We have implemented our solver and tested it with open source data. The experimental results show that our solver can be twice as fast as the counterpart while maintaining a loss of less than 5% in accuracy.

[1]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[2]  Hauke Strasdat,et al.  Scale Drift-Aware Large Scale Monocular SLAM , 2010, Robotics: Science and Systems.

[3]  Dezhen Song,et al.  Sharing Heterogeneous Spatial Knowledge: Map Fusion Between Asynchronous Monocular Vision and Lidar or Other Prior Inputs , 2019, ISRR.

[4]  Sebastian Thrun,et al.  Multi-robot SLAM with Sparse Extended Information Filers , 2003, ISRR.

[5]  Hauke Strasdat,et al.  Real-time monocular SLAM: Why filter? , 2010, 2010 IEEE International Conference on Robotics and Automation.

[6]  Teresa A. Vidal-Calleja,et al.  Impact of Landmark Parametrization on Monocular EKF-SLAM with Points and Lines , 2011, International Journal of Computer Vision.

[7]  Hujun Bao,et al.  ICE-BA: Incremental, Consistent and Efficient Bundle Adjustment for Visual-Inertial SLAM , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[8]  Viorela Ila,et al.  SLAM++ 1 -A highly efficient and temporally scalable incremental SLAM framework , 2017, Int. J. Robotics Res..

[9]  Timothy A. Davis,et al.  Algorithm 836: COLAMD, a column approximate minimum degree ordering algorithm , 2004, TOMS.

[10]  Timothy A. Davis,et al.  Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.

[11]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[12]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[13]  Timothy A. Davis,et al.  Modifying a Sparse Cholesky Factorization , 1999, SIAM J. Matrix Anal. Appl..

[14]  Pavel Zemcík,et al.  Incremental Block Cholesky Factorization for Nonlinear Least Squares in Robotics , 2013, Robotics: Science and Systems.

[15]  Michel Dhome,et al.  Real Time Localization and 3D Reconstruction , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[16]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[17]  Timothy A. Davis,et al.  Multiple-Rank Modifications of a Sparse Cholesky Factorization , 2000, SIAM J. Matrix Anal. Appl..

[18]  Viorela Ila,et al.  Fast Incremental Bundle Adjustment with Covariance Recovery , 2017, 2017 International Conference on 3D Vision (3DV).

[19]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[20]  Juan D. Tardós,et al.  ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras , 2016, IEEE Transactions on Robotics.

[21]  Dezhen Song,et al.  Visual Navigation Using Heterogeneous Landmarks and Unsupervised Geometric Constraints , 2015, IEEE Transactions on Robotics.

[22]  Haifeng Li,et al.  Encoder-Camera-Ground Penetrating Radar Tri-Sensor Mapping for Surface and Subsurface Transportation Infrastructure Inspection , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[23]  Kurt Konolige,et al.  g 2 o: A general Framework for (Hyper) Graph Optimization , 2011 .

[24]  Frank Dellaert,et al.  iSAM: Incremental Smoothing and Mapping , 2008, IEEE Transactions on Robotics.

[25]  Frank Dellaert,et al.  iSAM2: Incremental smoothing and mapping using the Bayes tree , 2012, Int. J. Robotics Res..

[26]  Frank Dellaert,et al.  Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing , 2006, Int. J. Robotics Res..

[27]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[28]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Frank Dellaert,et al.  Incremental smoothing and mapping , 2008 .

[30]  Timothy A. Davis,et al.  Row Modifications of a Sparse Cholesky Factorization , 2005, SIAM J. Matrix Anal. Appl..

[31]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[32]  Gonzalo Ferrer,et al.  ApriISAM: Real-Time Smoothing and Mapping , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[33]  Javier Civera,et al.  1-point RANSAC for EKF-based Structure from Motion , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[34]  Timothy A. Davis,et al.  Dynamic Supernodes in Sparse Cholesky Update/Downdate and Triangular Solves , 2009, TOMS.

[35]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..