Big Data Blind Separation

Data or signal separation is one of the critical areas of data analysis. In this work, the problem of non-negative data separation is considered. The problem can be briefly described as follows: given X∈Rm×N, find A∈Rm×n and S∈R+n×N such that X=AS. Specifically, the problem with sparse locally dominant sources is addressed in this work. Although the problem is well studied in the literature, a test to validate the locally dominant assumption is not yet available. In addition to that, the typical approaches available in the literature sequentially extract the elements of the mixing matrix. In this work, a mathematical modeling-based approach is presented that can simultaneously validate the assumption, and separate the given mixture data. In addition to that, a correntropy-based measure is proposed to reduce the model size. The approach presented in this paper is suitable for big data separation. Numerical experiments are conducted to illustrate the performance and validity of the proposed approach.

[1]  Aapo Hyvärinen,et al.  New Approximations of Differential Entropy for Independent Component Analysis and Projection Pursuit , 1997, NIPS.

[2]  Fabian J. Theis,et al.  Identifiability Conditions and Subspace Clustering in Sparse BSS , 2007, ICA.

[3]  Nanning Zheng,et al.  Generalized Correntropy for Robust Adaptive Filtering , 2015, IEEE Transactions on Signal Processing.

[4]  Antonio J. Plaza,et al.  A Signal Processing Perspective on Hyperspectral Unmixing: Insights from Remote Sensing , 2014, IEEE Signal Processing Magazine.

[5]  Guillaume Marrelec,et al.  Increase of posterior connectivity in aging within the Ventral Attention Network: A functional connectivity analysis using independent component analysis , 2017, Brain Research.

[6]  Andrzej Cichocki,et al.  A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.

[7]  Badong Chen,et al.  Kernel adaptive filtering with maximum correntropy criterion , 2011, The 2011 International Joint Conference on Neural Networks.

[8]  Zhang Yi,et al.  Underdetermined Blind Source Separation Using Sparse Coding , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[9]  Jocelyn Chanussot,et al.  Blind Hyperspectral Unmixing Using an Extended Linear Mixing Model to Address Spectral Variability , 2016, IEEE Transactions on Image Processing.

[10]  Jack Xin,et al.  Nonnegative Sparse Blind Source Separation for NMR Spectroscopy by Data Clustering, Model Reduction, and 1 Minimization , 2012, SIAM J. Imaging Sci..

[11]  Fabian J. Theis,et al.  Sparse Component Analysis: a New Tool for Data Mining , 2004 .

[12]  José M. Bioucas-Dias,et al.  Does independent component analysis play a role in unmixing hyperspectral data? , 2003, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Panos M. Pardalos,et al.  Robust Physiological Mappings: From Non-Invasive to Invasive , 2015 .

[14]  A. J. Shaka,et al.  Postprocessing and sparse blind source separation of positive and partially overlapped data , 2011, Signal Process..

[15]  Xi Liu,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < , 2022 .

[16]  Chong-Yung Chi,et al.  A Fast Hyperplane-Based Minimum-Volume Enclosing Simplex Algorithm for Blind Hyperspectral Unmixing , 2015, IEEE Transactions on Signal Processing.

[17]  Michael Zibulevsky,et al.  Underdetermined blind source separation using sparse representations , 2001, Signal Process..

[18]  A. Bruckstein,et al.  On the uniqueness of overcomplete dictionaries, and a practical way to retrieve them , 2006 .

[19]  Karin Schnass,et al.  Dictionary Identification—Sparse Matrix-Factorization via $\ell_1$ -Minimization , 2009, IEEE Transactions on Information Theory.

[20]  Nanning Zheng,et al.  Steady-State Mean-Square Error Analysis for Adaptive Filtering under the Maximum Correntropy Criterion , 2014, IEEE Signal Processing Letters.

[21]  Ganesh R. Naik,et al.  Enhanced forensic speaker verification using multi-run ICA in the presence of environmental noise and reverberation conditions , 2017, 2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA).

[22]  Jun Li,et al.  Robust Minimum Volume Simplex Analysis for Hyperspectral Unmixing , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[23]  G. Naik,et al.  Transradial Amputee Gesture Classification Using an Optimal Number of sEMG Sensors: An Approach Using ICA Clustering , 2016, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[24]  Yogendra Arya,et al.  AGC performance enrichment of multi-source hydrothermal gas power systems using new optimized FOFPID controller and redox flow batteries , 2017 .

[25]  Chong-Yung Chi,et al.  A Convex Analysis Framework for Blind Separation of Non-Negative Sources , 2008, IEEE Transactions on Signal Processing.

[26]  Chong-Yung Chi,et al.  A Convex Analysis-Based Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing , 2009, IEEE Transactions on Signal Processing.

[27]  Jack Xin,et al.  A geometric blind source separation method based on facet component analysis , 2013, Signal Image Video Process..

[28]  T Talaky,et al.  Interior Point Methods of Mathematical Programming , 1997 .

[29]  José M. Bioucas-Dias,et al.  Minimum Volume Simplex Analysis: A Fast Algorithm to Unmix Hyperspectral Data , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[30]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[31]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[32]  José Carlos Príncipe,et al.  Generalized correlation function: definition, properties, and application to blind equalization , 2006, IEEE Transactions on Signal Processing.

[33]  Mario Winter,et al.  N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data , 1999, Optics & Photonics.

[34]  Seungjin Choi,et al.  Independent Component Analysis , 2009, Handbook of Natural Computing.

[35]  Panos M. Pardalos,et al.  On the optimization properties of the correntropic loss function in data analysis , 2014, Optim. Lett..

[36]  José M. Bioucas-Dias,et al.  Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[37]  J. Nuzillard,et al.  Extreme direction analysis for blind separation of nonnegative signals , 2017, Signal Process..

[38]  Christian Jutten,et al.  Detection de grandeurs primitives dans un message composite par une architecture de calcul neuromime , 1985 .

[39]  Pierre Comon,et al.  Handbook of Blind Source Separation: Independent Component Analysis and Applications , 2010 .

[40]  Antonio J. Plaza,et al.  Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[41]  S. Dennis,et al.  Latent constructs underlying sensory subtypes in children with autism: A preliminary study , 2017, Autism research : official journal of the International Society for Autism Research.

[42]  Joseph F. Murray,et al.  Dictionary Learning Algorithms for Sparse Representation , 2003, Neural Computation.

[43]  Saâd Jbabdi,et al.  Concurrent white matter bundles and grey matter networks using independent component analysis , 2017, NeuroImage.

[44]  Erling D. Andersen,et al.  Presolving in linear programming , 1995, Math. Program..

[45]  R. Liptser The control of a wiener process with incomplete data , 1965 .

[46]  Panos M. Pardalos,et al.  A hierarchical approach for sparse source Blind Signal Separation problem , 2014, Comput. Oper. Res..

[47]  Hiroshi Sawada,et al.  Geometrical Interpretation of the PCA Subspace Approach for Overdetermined Blind Source Separation , 2006, EURASIP J. Adv. Signal Process..

[48]  Weifeng Liu,et al.  Correntropy: Properties and Applications in Non-Gaussian Signal Processing , 2007, IEEE Transactions on Signal Processing.

[49]  Russell H. Lambert,et al.  OVERDETERMINED BLIND SOURCE SEPARATION: USING MORE SENSORS THAN SOURCE SIGNALS IN A NOISY MIXTURE , 2000 .

[50]  Saïd Moussaoui,et al.  Source Separation in Chemical Analysis : Recent achievements and perspectives , 2014, IEEE Signal Processing Magazine.

[51]  Rifai Chai,et al.  Driver Fatigue Classification With Independent Component by Entropy Rate Bound Minimization Analysis in an EEG-Based System , 2017, IEEE Journal of Biomedical and Health Informatics.

[52]  Fereidoun Amini,et al.  Underdetermined blind modal identification of structures by earthquake and ambient vibration measurements via sparse component analysis , 2016 .

[53]  José M. Bioucas-Dias,et al.  Blind hyperspectral unmixing , 2007, SPIE Remote Sensing.

[54]  Wady Naanaa,et al.  Blind source separation of positive and partially correlated data , 2005, Signal Process..

[55]  Panos M. Pardalos,et al.  Blind Signal Separation Methods in Computational Neuroscience , 2013 .

[56]  D. Griffel Linear programming 2: Theory and extensions , by G. B. Dantzig and M. N. Thapa. Pp. 408. £50.00. 2003 ISBN 0 387 00834 9 (Springer). , 2004, The Mathematical Gazette.

[57]  Ganesh R. Naik,et al.  Dependence Independence Measure for Posterior and Anterior EMG Sensors Used in Simple and Complex Finger Flexion Movements: Evaluation Using SDICA , 2015, IEEE Journal of Biomedical and Health Informatics.

[58]  José Carlos Príncipe,et al.  Using Correntropy as a cost function in linear adaptive filters , 2009, 2009 International Joint Conference on Neural Networks.