Self‐sealing thermoplastic fluoroelastomer enables rapid fabrication of modular microreactors

[1]  Emma K. Thomée,et al.  Rapid Fabrication of Membrane-Integrated Thermoplastic Elastomer Microfluidic Devices , 2020, Micromachines.

[2]  Y. Torisawa,et al.  Tetrafluoroethylene-Propylene Elastomer for Fabrication of Microfluidic Organs-on-Chips Resistant to Drug Absorption , 2019, Micromachines.

[3]  Daniel J. Case,et al.  Braess’s paradox and programmable behaviour in microfluidic networks , 2019, Nature.

[4]  A. Shen,et al.  3D-printed glass microfluidics for fluid dynamics and rheology , 2019, Current Opinion in Colloid & Interface Science.

[5]  D. D. De Vos,et al.  Bipyridine-based UiO-67 as novel filler in mixed-matrix membranes for CO2-selective gas separation , 2019, Journal of Membrane Science.

[6]  Nikolaj Gadegaard,et al.  30 years of microfluidics , 2019, Micro and Nano Engineering.

[7]  Yiqiang Fan,et al.  Applications of Modular Microfluidics Technology , 2018, Chinese Journal of Analytical Chemistry.

[8]  S. Chakraborty,et al.  Wettability-mediated dynamics of two-phase flow in microfluidic T-junction , 2018, Physics of Fluids.

[9]  T. Veres,et al.  Soft Thermoplastic Elastomer for Easy and Rapid Spin‐Coating Fabrication of Microfluidic Devices with High Hydrophilization and Bonding Performances , 2018, Advanced Materials Technologies.

[10]  Eiji Iwase,et al.  Rapid prototyping of fluoropolymer microchannels by xurography for improved solvent resistance. , 2018, Biomicrofluidics.

[11]  Zhanqiang Liu,et al.  Effect of wall roughness on performance of microchannel applied in microfluidic device , 2018, Microsystem Technologies.

[12]  J. Choo,et al.  Fluoropolymer-Coated PDMS Microfluidic Devices for Application in Organic Synthesis. , 2018, Chemistry.

[13]  I. Vankelecom,et al.  Blending PPO‐based molecules with Pebax MH 1657 in membranes for gas separation , 2018 .

[14]  D. Bajwa,et al.  Green esterification: a new approach to improve thermal and mechanical properties of poly(lactic acid) composites reinforced by cellulose nanocrystals , 2018 .

[15]  Yong‐Joe Kim,et al.  Single-cell compressibility quantification for assessing metastatic potential of cancer cells through multi-frequency acoustophoresis , 2018 .

[16]  A. E. del Río Hernández,et al.  Cost-effective rapid prototyping and assembly of poly(methyl methacrylate) microfluidic devices , 2018, Scientific Reports.

[17]  F. Kotz,et al.  Highly Fluorinated Methacrylates for Optical 3D Printing of Microfluidic Devices , 2018, Micromachines.

[18]  M. Vayer,et al.  New insights into polymer-solvent affinity in thin films , 2017 .

[19]  Emmanuel Roy,et al.  Thermoplastic elastomer with advanced hydrophilization and bonding performances for rapid (30 s) and easy molding of microfluidic devices. , 2017, Lab on a chip.

[20]  P. Seeberger,et al.  The Hitchhiker's Guide to Flow Chemistry ∥. , 2017, Chemical reviews.

[21]  T. Zuo,et al.  Surface roughness analysis and thermal bonding of microfluidic chips fabricated by CD/DVD manufacturing technology , 2017 .

[22]  Richard M Maceiczyk,et al.  Small but Perfectly Formed? Successes, Challenges, and Opportunities for Microfluidics in the Chemical and Biological Sciences , 2017 .

[23]  Chia-Wen Tsao,et al.  Polymer Microfluidics: Simple, Low-Cost Fabrication Process Bridging Academic Lab Research to Commercialized Production , 2016, Micromachines.

[24]  R. Juanes,et al.  Wettability control on multiphase flow in patterned microfluidics , 2016, Proceedings of the National Academy of Sciences.

[25]  K. Sugioka,et al.  Making the invisible visible: a microfluidic chip using a low refractive index polymer. , 2016, Lab on a chip.

[26]  P. Garstecki,et al.  Whole Teflon valves for handling droplets. , 2016, Lab on a chip.

[27]  Ya-Wei Lee,et al.  Ultrafast laser ablation of soda-lime glass for fabricating microfluidic pillar array channels , 2016 .

[28]  Shinji Deguchi,et al.  Viscoelastic and optical properties of four different PDMS polymers , 2015 .

[29]  Emmanuel Delamarche,et al.  Lab-on-a-chip devices , 2015 .

[30]  Martin D. Brennan,et al.  Oxygen control with microfluidics. , 2014, Lab on a chip.

[31]  Assunta Marrocchi,et al.  Flow approaches towards sustainability , 2014 .

[32]  Baomin Dai,et al.  Effect of surface roughness on liquid friction and transition characteristics in micro- and mini-channels , 2014 .

[33]  Noah Malmstadt,et al.  Fluoropolymer surface coatings to control droplets in microfluidic devices. , 2014, Lab on a chip.

[34]  Albert Folch,et al.  Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices. , 2014, Lab on a chip.

[35]  M. C. Tracey,et al.  Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering , 2014 .

[36]  A. deMello,et al.  The past, present and potential for microfluidic reactor technology in chemical synthesis. , 2013, Nature chemistry.

[37]  E. Yousif,et al.  Photodegradation and photostabilization of polymers, especially polystyrene: review , 2013, SpringerPlus.

[38]  Jonathan D Posner,et al.  Simple replica micromolding of biocompatible styrenic elastomers. , 2013, Lab on a chip.

[39]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[40]  David Beebe,et al.  Engineers are from PDMS-land, Biologists are from Polystyrenia. , 2012, Lab on a chip.

[41]  T. Veres,et al.  Thermoplastic elastomers for microfluidics: towards a high-throughput fabrication method of multilayered microfluidic devices. , 2011, Lab on a chip.

[42]  Jie-ying Tang,et al.  Micromachining of Pyrex 7740 Glass by Silicon Molding and Vacuum Anodic Bonding , 2011, Journal of Microelectromechanical Systems.

[43]  Wen Dai,et al.  Whole-Teflon microfluidic chips , 2011, Proceedings of the National Academy of Sciences.

[44]  M. Geissler,et al.  Prototyping of microfluidic systems using a commercial thermoplastic elastomer , 2011 .

[45]  V. Hessel,et al.  Continuous synthesis of tert-butyl peroxypivalate using a single-channel microreactor equipped with orifices as emulsification units. , 2011, ChemSusChem.

[46]  J. Yoshida,et al.  Switching Reaction Pathways of Benzo[b]thiophen-3-yllithium and Benzo[b]furan-3-yllithium Based on High-resolution Residence-time and Temperature Control in a Flow Microreactor , 2011 .

[47]  Jean-Louis Viovy,et al.  New family of fluorinated polymer chips for droplet and organic solvent microfluidics. , 2011, Lab on a chip.

[48]  François Gallaire,et al.  Microchannel deformations due to solvent-induced PDMS swelling. , 2010, Lab on a chip.

[49]  Matthew C. Mowlem,et al.  Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC , 2010 .

[50]  S. Basu,et al.  Novel high throughput equipment for membrane-based gas separations , 2010 .

[51]  P. Garstecki,et al.  Bonding of microfluidic devices fabricated in polycarbonate. , 2010, Lab on a chip.

[52]  Fabrice Renaud,et al.  Facile, Fast and Safe Process Development of Nitration and Bromination Reactions Using Continuous Flow Reactors , 2009 .

[53]  D. Chiu,et al.  Calcium-assisted glass-to-glass bonding for fabrication of glass microfluidic devices. , 2008, Analytical chemistry.

[54]  Bruce K. Gale,et al.  Determining the optimal PDMS–PDMS bonding technique for microfluidic devices , 2008 .

[55]  Huaxin Rao,et al.  Preparation and oxygen/nitrogen permeability of PDMS crosslinked membrane and PDMS/tetraethoxysilicone hybrid membrane , 2007 .

[56]  Teodor Veres,et al.  Surface modification of thermoplastics--towards the plastic biochip for high throughput screening devices. , 2007, Lab on a chip.

[57]  C. Hansen,et al.  Hansen Solubility Parameters : A User's Handbook, Second Edition , 2007 .

[58]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.

[59]  D. Beebe,et al.  PDMS absorption of small molecules and consequences in microfluidic applications. , 2006, Lab on a chip.

[60]  S. Kandlikar,et al.  Characterization of the effect of surface roughness and texture on fluid flow—past, present, and future , 2006 .

[61]  P. Corkum,et al.  Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching , 2006 .

[62]  Qinjun Kang,et al.  Displacement of a three-dimensional immiscible droplet in a duct , 2005, Journal of Fluid Mechanics.

[63]  A. Mata,et al.  Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems , 2005, Biomedical microdevices.

[64]  Aigars Piruska,et al.  The autofluorescence of plastic materials and chips measured under laser irradiation. , 2005, Lab on a chip.

[65]  J. Berg,et al.  Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength , 2005, Journal of Microelectromechanical Systems.

[66]  W. R. Dolbier,et al.  Fluorine chemistry at the millennium , 2005 .

[67]  G Medoro,et al.  Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips. , 2005, Lab on a chip.

[68]  Dong-il Dan Cho,et al.  In-plane single-crystal-silicon microneedles for minimally invasive microfluid systems , 2004 .

[69]  Zhao-Lun Fang,et al.  Bonding of glass microfluidic chips at room temperatures. , 2004, Analytical chemistry.

[70]  S. Quake,et al.  Solvent-Resistant Photocurable “Liquid Teflon” for Microfluidic Device Fabrication , 2004 .

[71]  Howard A. Stone,et al.  ENGINEERING FLOWS IN SMALL DEVICES , 2004 .

[72]  G. Whitesides,et al.  Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. , 2003, Analytical chemistry.

[73]  V. Arcella,et al.  High Performance Perfluoropolymer Films and Membranes , 2003, Annals of the New York Academy of Sciences.

[74]  Brian H Warrington,et al.  A Hantzsch synthesis of 2-aminothiazoles performed in a heated microreactor system. , 2002, Lab on a chip.

[75]  Martin A. M. Gijs,et al.  Development of novel low temperature bonding technologies for microchip chemical analysis applications , 2000 .

[76]  S. Quake,et al.  Monolithic microfabricated valves and pumps by multilayer soft lithography. , 2000, Science.

[77]  T. Merkel,et al.  Gas sorption, diffusion, and permeation in poly(dimethylsiloxane) , 2000 .

[78]  Wolfgang Ehrfeld,et al.  Characterization of Mixing in Micromixers by a Test Reaction: Single Mixing Units and Mixer Arrays , 1999 .

[79]  Stephen C. Jacobson,et al.  Low temperature bonding for microfabrication of chemical analysis devices , 1997 .

[80]  S. Jacobson,et al.  High-Speed Separations on a Microchip , 1994 .

[81]  D. J. Harrison,et al.  Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip , 1993, Science.

[82]  D. J. Harrison,et al.  Capillary electrophoresis and sample injection systems integrated on a planar glass chip , 1992 .

[83]  S. H. Hamid,et al.  Application of Infrared Spectroscopy in Polymer Degradation , 1988 .

[84]  M. Owen Low Surface Energy Inorganic Polymers , 1988 .

[85]  F. Fowkes ATTRACTIVE FORCES AT INTERFACES , 1964 .

[86]  M. Moraveji,et al.  Computational fluid dynamics to analyze the effects of initial wetting film and triple contact line on the efficiency of immiscible two-phase flow in a pore doublet model , 2019, Journal of Molecular Liquids.

[87]  Donald E Ingber,et al.  Rapid Prototyping of Thermoplastic Microfluidic Devices. , 2018, Methods in molecular biology.

[88]  Yuejun Kang,et al.  A simple technique of constructing nano-roughened polydimethylsiloxane surface to enhance mesenchymal stem cell adhesion and proliferation , 2017 .

[89]  J. E. Mark,et al.  Physical properties of polymers handbook , 2007 .

[90]  A. Manz,et al.  Microchip-based synthesis and total analysis systems (µSYNTAS):chemical microprocessing for generation and analysis of compound libraries , 2001 .

[91]  G. Whitesides,et al.  Fabrication of microfluidic systems in poly(dimethylsiloxane) , 2000, Electrophoresis.

[92]  C Gärtner,et al.  Polymer microfabrication methods for microfluidic analytical applications , 2000, Electrophoresis.

[93]  A. Manz,et al.  Miniaturized total chemical analysis systems: A novel concept for chemical sensing , 1990 .