Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization

Integration of real-time optimization and control with higher level decision-making (scheduling and planning) is an essential goal for profitable operation in a highly competitive environment. While integrated large-scale optimization models have been formulated for this task, their size and complexity remains a challenge to many available optimization solvers. On the other hand, recent development of powerful, large-scale solvers leads to a reconsideration of these formulations, in particular, through development of efficient large-scale barrier methods for nonlinear programming (NLP). As a result, it is now realistic to solve NLPs on the order of a million variables, for instance, with the IPOPT algorithm. Moreover, the recent NLP sensitivity extension to IPOPT quickly computes approximate solutions of perturbed NLPs. This allows on-line computations to be drastically reduced, even when large nonlinear optimization models are considered. These developments are demonstrated on dynamic real-time optimization strategies that can be used to merge and replace the tasks of (steady-state) real-time optimization and (linear) model predictive control. We consider a recent case study of a low density polyethylene (LDPE) process to illustrate these concepts.

[1]  Riccardo Scattolini,et al.  Robustness and robust design of MPC for nonlinear systems , 2007 .

[2]  Ian David Lockhart Bogle,et al.  Computers and Chemical Engineering , 2008 .

[3]  James B. Rawlings,et al.  Critical Evaluation of Extended Kalman Filtering and Moving-Horizon Estimation , 2005 .

[4]  L. Biegler,et al.  Advances in simultaneous strategies for dynamic process optimization , 2002 .

[5]  E. Camacho,et al.  Nonlinear Model Predictive Control: An Introductory Review , 2007 .

[6]  Thomas E. Marlin,et al.  The effect of model fidelity on real-time optimization performance , 2004, Comput. Chem. Eng..

[7]  S. Joe Qin,et al.  An Overview of Nonlinear Model Predictive Control Applications , 2000 .

[8]  Sebastian Engell Feedback control for optimal process operation , 2007 .

[9]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[10]  Darci Odloak,et al.  Integrating real-time optimization into the model predictive controller of the FCC system , 2002 .

[11]  L. Biegler,et al.  A FAST COMPUTATIONAL FRAMEWORK FOR LARGE-SCALE MOVING HORIZON ESTIMATION , 2007 .

[12]  Wolfgang Marquardt,et al.  Dynamic predictive scheduling of operational strategies for continuous processes using mixed-logic dynamic optimization , 2007, Comput. Chem. Eng..

[13]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[14]  L. Biegler,et al.  Dynamic Optimization in the Design and Scheduling of Multiproduct Batch Plants , 1996 .

[15]  Ignacio E. Grossmann,et al.  Enterprise‐wide optimization: A new frontier in process systems engineering , 2005 .

[16]  David Q. Mayne,et al.  Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations , 2003, IEEE Trans. Autom. Control..

[17]  Victor M. Zavala,et al.  Interior-point decomposition approaches for parallel solution of large-scale nonlinear parameter estimation problems , 2008 .

[18]  Rüdiger Franke,et al.  Integration of Advanced Model Based Control with Industrial IT , 2007 .

[19]  Wolfgang Marquardt,et al.  Integration of Economical Optimization and Control for Intentionally Transient Process Operation , 2007 .

[20]  L. Biegler,et al.  Optimization strategies for simulated moving bed and PowerFeed processes , 2006 .

[21]  R. Donald Bartusiak,et al.  NLMPC: A Platform for Optimal Control of Feed- or Product-Flexible Manufacturing , 2007 .

[22]  Hans Bock,et al.  FINITE HORIZON OPTIMIZING CONTROL OF ADVANCED SMB CHROMATOGRAPHIC PROCESSES , 2005 .

[23]  William W. Hager,et al.  Runge-Kutta methods in optimal control and the transformed adjoint system , 2000, Numerische Mathematik.

[24]  Victor M. Zavala,et al.  Large-scale nonlinear programming strategies for the operation of LDPE tubular reactors , 2008 .

[25]  Ignacio E. Grossmann,et al.  Simultaneous Cyclic Scheduling and Control of a Multiproduct CSTR Reactor , 2006 .

[26]  Martin Grötschel,et al.  Online optimization of large scale systems , 2001 .

[27]  L. Biegler,et al.  A fast moving horizon estimation algorithm based on nonlinear programming sensitivity , 2008 .

[28]  Zoltan K. Nagy,et al.  Real-Time Implementation of Nonlinear Model Predictive Control of Batch Processes in an Industrial Framework , 2007 .

[29]  Eduardo F. Camacho,et al.  Nonlinear Model Predictive Control , 2007 .

[30]  Lorenz T. Biegler,et al.  Simulation and optimization of pressure-swing adsorption systems for air separation , 2003 .

[31]  L. Biegler,et al.  Large-scale dynamic optimization for grade transitions in a low density polyethylene plant , 2002 .

[32]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[33]  Lorenz T. Biegler,et al.  Dynamic optimization of the Tennessee Eastman process using the OptControlCentre , 2003, Comput. Chem. Eng..

[34]  Sebastian Engell,et al.  FEEDBACK CONTROL FOR OPTIMAL PROCESS OPERATION , 2007 .

[35]  Lorenz T. Biegler,et al.  Convergence rates for direct transcription of optimal control problems using collocation at Radau points , 2008, Comput. Optim. Appl..

[36]  Ignacio E. Grossmann,et al.  A model predictive control strategy for supply chain optimization , 2003, Comput. Chem. Eng..

[37]  Frank Allgöwer,et al.  Computational Delay in Nonlinear Model Predictive Control , 2004 .

[38]  Tor Arne Johansen,et al.  Lyapunov-based optimizing control of nonlinear blending processes , 2005, IEEE Transactions on Control Systems Technology.

[39]  Sun-Won Park,et al.  Prediction of Pellet Properties for an Industrial Bimodal High-Density Polyethylene Process with Ziegler−Natta Catalysts , 2005 .

[40]  Victor M. Zavala,et al.  Fast implementations and rigorous models: Can both be accommodated in NMPC? , 2008 .

[41]  Victor M. Zavala,et al.  The advanced-step NMPC controller: Optimality, stability and robustness , 2009, Autom..