Confluent Hasse Diagrams

We show that a transitively reduced digraph has a confluent upward drawing if and only if its reachability relation has order dimension at most two. In this case, we construct a confluent upward drawing with $O(n^2)$ features, in an $O(n) \times O(n)$ grid in $O(n^2)$ time. For the digraphs representing series-parallel partial orders we show how to construct a drawing with $O(n)$ features in an $O(n) \times O(n)$ grid in $O(n)$ time from a series-parallel decomposition of the partial order. Our drawings are optimal in the number of confluent junctions they use.

[1]  Bernhard Ganter,et al.  Stepwise Construction of the Dedekind-MacNeille Completion (Research Note) , 1998, ICCS.

[2]  Paul D. Amer,et al.  Partial-order transport service for multimedia and other applications , 1994, TNET.

[3]  Roberto Tamassia,et al.  Algorithms for Plane Representations of Acyclic Digraphs , 1988, Theor. Comput. Sci..

[4]  Roberto Tamassia,et al.  On the Computational Complexity of Upward and Rectilinear Planarity Testing , 1994, SIAM J. Comput..

[5]  Michael J. Pelsmajer,et al.  Train Tracks and Confluent Drawings , 2006, Algorithmica.

[6]  Jeremy P. Spinrad,et al.  Transitive closure for restricted classes of partial orders , 1991 .

[7]  Pascal Weil,et al.  Series-Parallel Posets: Algebra, Automata and Languages , 1998, STACS.

[8]  Nejib Zaguia,et al.  Upward Drawing on the Plane Grid Using Less Ink , 1994, GD.

[9]  David Eppstein,et al.  Delta-Confluent Drawings , 2005, Graph Drawing.

[10]  C. R. Platt,et al.  Planar lattices and planar graphs , 1976, J. Comb. Theory, Ser. B.

[11]  Lhouari Nourine,et al.  Drawing and Encoding Two-Dimensional Posets , 1997, Theor. Comput. Sci..

[12]  Rolf H. Möhring,et al.  Scheduling series-parallel orders subject to 0/1-communication delays , 1999, Parallel Comput..

[13]  J. Schmid,et al.  Drawing orders using less ink , 1992 .

[14]  Rolf H. Möhring,et al.  Computationally Tractable Classes of Ordered Sets , 1989 .

[15]  Peter C. Fishburn,et al.  PARTIAL ORDERS OF DIMENSION 2, INTERVAL ORDERS AND INTERVAL GRAPHS, , 1970 .

[16]  MICHAEL D. HUTTON,et al.  Upward planar drawing of single source acyclic digraphs , 1991, SODA '91.

[17]  H. M. MACNEILLEf,et al.  Partially ordered sets , 1937 .

[18]  Johannes Nowak,et al.  Fast Lowest Common Ancestor Computations in Dags , 2007, ESA.

[19]  Michael Hirsch,et al.  Biclique Edge Cover Graphs and Confluent Drawings , 2006, Graph Drawing.

[20]  Carlo Mannino,et al.  Optimal Upward Planarity Testing of Single-Source Digraphs , 1993, ESA.

[21]  Heikki Mannila,et al.  Global partial orders from sequential data , 2000, KDD '00.

[22]  Emden R. GansnerYifan Multilevel Agglomerative Edge Bundling for Visualizing Large Graphs , 2011 .

[23]  Lhouari Nourine,et al.  A Fast Algorithm for Building Lattices , 1999, Inf. Process. Lett..

[24]  Über eine Eigenschaft der Dedekind-MacNeilleschen Hülle , 1969 .

[25]  David Eppstein,et al.  Confluent Layered Drawings , 2006, Algorithmica.

[26]  Ralf Hartmut Güting,et al.  Fast Algorithms for Direct Enclosures and Direct Dominances , 1989, J. Algorithms.

[27]  Peter C. Fishburn,et al.  Partial orders of dimension 2 , 1972, Networks.