Simulation of coherent structures in nonlinear Schrödinger-type equations

This paper presents some numerical methods to simulate the evolution of coherent structures with small fluctuations, that appear as typical solutions of a class of nonintegrable nonlinear Schrodinger equations. The construction of the methods is particularly focused on two points: on one hand, the generation of the ground state profiles, to be used in the initial data of the simulations, combines a suitable spatial discretization with the resolution of a discrete variational problem. On the other hand, the approximation to leading parameters of these structures is controlled by the time integration. We compare different methods when simulating the evolution of initial ground state profiles and some initial data perturbed from them.

[1]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[2]  Yuji Kodama,et al.  Solitons in optical communications , 1995 .

[3]  Jordan,et al.  Self-organization in nonlinear wave turbulence , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  G. Akrivis,et al.  On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation , 1991 .

[5]  P. Markowich,et al.  Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.

[6]  Qiang Du,et al.  Computing the Ground State Solution of Bose-Einstein Condensates by a Normalized Gradient Flow , 2003, SIAM J. Sci. Comput..

[7]  Craig L. Zirbel,et al.  A mean-field statistical theory for the nonlinear Schrödinger equation , 1999, chao-dyn/9904030.

[8]  Y. Pomeau Asymptotic time behaviour of nonlinear classical field equations , 1992 .

[9]  V. Zakharov Collapse of Langmuir Waves , 1972 .

[10]  Thiab R. Taha,et al.  A numerical scheme for the nonlinear Schrödinger equation , 1991 .

[11]  David W. McLaughlin,et al.  Morse and Melnikov functions for NLS Pde's , 1994 .

[12]  J. I. Ramos,et al.  Linearly implicit methods for the nonlinear Schrödinger equation in nonhomogeneous media , 2002, Appl. Math. Comput..

[13]  Statistical equilibrium states for the nonlinear Schrödinger equation , 2001 .

[14]  Mechthild Thalhammer,et al.  High-order time-splitting Hermite and Fourier spectral methods , 2009, J. Comput. Phys..

[15]  P. L. Kelley,et al.  Self-focusing of optical beams , 1965, International Quantum Electronics Conference, 2005..

[16]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .

[17]  S. Manakov,et al.  On the complete integrability of a nonlinear Schrödinger equation , 1974 .

[18]  M. A. López-Marcos,et al.  Conservative numerical methods for solitary wave interactions , 2003 .

[19]  John P. Boyd,et al.  Non-commercial Research and Educational Use including without Limitation Use in Instruction at Your Institution, Sending It to Specific Colleagues That You Know, and Providing a Copy to Your Institution's Administrator. All Other Uses, Reproduction and Distribution, including without Limitation Comm , 2022 .

[20]  Edwards,et al.  Numerical solution of the nonlinear Schrödinger equation for small samples of trapped neutral atoms. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[21]  Lynne D. Talley,et al.  Generalizations of Arakawa's Jacobian , 1989 .

[22]  D. Furihata,et al.  Dissipative or Conservative Finite Difference Schemes for Complex-Valued Nonlinear Partial Different , 2001 .

[23]  A. S. Fokas,et al.  Analysis of the Global Relation for the Nonlinear Schrödinger Equation on the Half-line , 2003 .

[24]  Weizhu Bao,et al.  Ground-state solution of Bose--Einstein condensate by directly minimizing the energy functional , 2003 .

[25]  P. Markowich,et al.  On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .

[26]  Alwyn C. Scott,et al.  Nonlinear Science: Emergence and Dynamics of Coherent Structures , 1999 .

[27]  David Cai,et al.  Chapter 12 The nonlinear Schrödinger equation as both a PDE and a dynamical system , 2002 .

[28]  A. Durán,et al.  The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation , 2000 .

[29]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[30]  Chunxiong Zheng,et al.  Exact nonreflecting boundary conditions for one-dimensional cubic nonlinear Schrödinger equations , 2006, J. Comput. Phys..

[31]  Elena Celledoni,et al.  Symmetric Exponential Integrators with an Application to the Cubic Schrödinger Equation , 2008, Found. Comput. Math..

[32]  Christophe Besse,et al.  Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations , 2006, SIAM J. Numer. Anal..

[33]  Eric Cancès,et al.  Ground state of the time-independent Gross-Pitaevskii equation , 2007, Comput. Phys. Commun..

[34]  Víctor M. Pérez-García,et al.  Symplectic methods for the nonlinear Schrödinger equation , 1996 .

[35]  N. V. Nikolenko On the complete integrability of the nonlinear Schrödinger equation , 1976 .

[36]  A. Durán,et al.  Time behaviour of the error when simulating finite-band periodic waves. The case of the KdV equation , 2008, J. Comput. Phys..

[37]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[38]  Kendall E. Atkinson An introduction to numerical analysis , 1978 .

[39]  Y. Tourigny,et al.  Optimal H1 Estimates for two Time-discrete Galerkin Approximations of a Nonlinear Schrödinger Equation , 1991 .

[40]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[41]  V. Petviashvili Equation of an extraordinary soliton , 1976 .

[42]  B. I. Schnieder,et al.  Numerical approach to the ground and excited states of a Bose-Einstein condensed gas confined in a completely anisotropic trap , 1999 .

[43]  J. G. Verwer,et al.  Conerservative and Nonconservative Schemes for the Solution of the Nonlinear Schrödinger Equation , 1986 .

[44]  Taras I. Lakoba,et al.  A generalized Petviashvili iteration method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity , 2007, J. Comput. Phys..

[45]  J. Shatah,et al.  Stability theory of solitary waves in the presence of symmetry, II☆ , 1990 .

[46]  Christian Lubich,et al.  On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..

[47]  Taras I. Lakoba,et al.  A mode elimination technique to improve convergence of iteration methods for finding solitary waves , 2007, J. Comput. Phys..

[48]  Mark J. Ablowitz,et al.  On the evolution of packets of water waves , 1979, Journal of Fluid Mechanics.

[49]  A. Fokas,et al.  The nonlinear Schrödinger equation on the interval , 2004 .

[50]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[51]  V. Zakharov,et al.  Soliton turbulence in nonintegrable wave systems , 1989 .

[52]  M. Ablowitz,et al.  Spectral renormalization method for computing self-localized solutions to nonlinear systems. , 2005, Optics letters.

[53]  J. M. Sanz-Serna,et al.  Methods for the numerical solution of the nonlinear Schroedinger equation , 1984 .

[54]  Isaías Alonso-Mallo,et al.  A high order finite element discretization with local absorbing boundary conditions of the linear Schrödinger equation , 2006, J. Comput. Phys..

[55]  A. Hasegawa,et al.  Self-organization processes in continuous media , 1985 .

[56]  Sauro Succi,et al.  Particle-inspired scheme for the Gross-Pitaevski equation: An application to Bose-Einstein condensation , 2000 .

[57]  B. Herbst,et al.  Split-step methods for the solution of the nonlinear Schro¨dinger equation , 1986 .

[58]  W. Strauss,et al.  Numerical solution of a nonlinear Klein-Gordon equation , 1978 .

[59]  Daisuke Furihata,et al.  Finite-difference schemes for nonlinear wave equation that inherit energy conservation property , 2001 .

[60]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[61]  Y. Pomeau Long time behavior of solutions of nonlinear classical field equations: the example of NLS defocusing , 1992 .

[62]  Bruce Turkington,et al.  Nonequilibrium statistical behavior of nonlinear Schrödinger equations , 2006 .

[63]  B. Cano,et al.  Conserved quantities of some Hamiltonian wave equations after full discretization , 2006, Numerische Mathematik.

[64]  Holland,et al.  Time-dependent solution of the nonlinear Schrödinger equation for Bose-condensed trapped neutral atoms. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[65]  Georgios Akrivis,et al.  Finite difference discretization of the cubic Schrödinger equation , 1993 .

[66]  Z. Fei,et al.  Numerical simulation of nonlinear Schro¨dinger systems: a new conservative scheme , 1995 .

[67]  Mark J. Ablowitz,et al.  A Nonlinear Difference Scheme and Inverse Scattering , 1976 .

[68]  Ben M. Herbst,et al.  Numerical Experience with the Nonlinear Schrödinger Equation , 1985 .

[69]  Mechthild Thalhammer,et al.  A minimisation approach for computing the ground state of Gross-Pitaevskii systems , 2009, J. Comput. Phys..

[70]  Gadi Fibich,et al.  Self-focusing on bounded domains , 2001 .

[71]  Jie Shen,et al.  A Fourth-Order Time-Splitting Laguerre-Hermite Pseudospectral Method for Bose-Einstein Condensates , 2005, SIAM J. Sci. Comput..

[72]  Clark,et al.  Properties of a Bose-Einstein condensate in an anisotropic harmonic potential. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[73]  Michel C. Delfour,et al.  Finite-difference solutions of a non-linear Schrödinger equation , 1981 .

[74]  Michael I. Weinstein,et al.  Modulational Stability of Ground States of Nonlinear Schrödinger Equations , 1985 .

[75]  Dmitry Pelinovsky,et al.  Convergence of Petviashvili's Iteration Method for Numerical Approximation of Stationary Solutions of Nonlinear Wave Equations , 2004, SIAM J. Numer. Anal..