Stabilization of unstable first‐order time‐delay systems using fractional‐order pd controllers

Abstract This paper considers the problem of stabilizing unstable first‐order time‐delay (FOTD) processes using fractional‐order proportional derivative (PD) controllers. It investigates how the fractional derivative order μ in the range (0, 2) affects the stabilizability of unstable FOTD processes. The D‐partition technique is used to characterize the boundary of the stability domain in the space of process and controller parameters. The characterization of a stability boundary allows one to describe and compute the maximum stabilizable time delay as a function of derivative gain and/or proportional gain. It is shown that for the the same derivative gain, a fractional‐order PD controller with derivative order less than unity has greater ability to stabilize unstable FOTD processes than an integer‐order PD controller. Such a fractional‐order PD controller can allow the use of higher derivative gain than an integer‐order PD controller. However, the setting of derivative gain greater than unity makes the maximum stabilizable time delay decrease drastically. When the derivative order μ is greater than unity, the allowable derivative gain is restricted to less than unity, as in the case of using an integer‐order PD controller, and, for a fixed derivative gain, the maximum stabilizable time delay decreases as the derivative order μ is increased.

[1]  Chyi Hwang,et al.  A numerical algorithm for stability testing of fractional delay systems , 2006, Autom..

[2]  Nusret Tan,et al.  Computation of stabilizing PI and PID controllers for processes with time delay. , 2005, ISA transactions.

[3]  Zhu Xin-jian,et al.  Digital implementation of fractional order PID controller and its application , 2005 .

[4]  J. A. Tenreiro Machado,et al.  Tuning of PID Controllers Based on Bode’s Ideal Transfer Function , 2004 .

[5]  A. J. Calderón,et al.  On Fractional PIλ Controllers: Some Tuning Rules for Robustness to Plant Uncertainties , 2004 .

[6]  Alberto Leva,et al.  On the IMC-based synthesis of the feedback block of ISA PID regulators , 2004 .

[7]  Ibrahim Kaya,et al.  IMC based automatic tuning method for PID controllers in a Smith predictor configuration , 2004, Comput. Chem. Eng..

[8]  C. Hwang,et al.  Stabilisation of first-order plus dead-time unstable processes using PID controllers , 2004 .

[9]  Chyi Hwang,et al.  On stabilization of first-order plus dead-time unstable processes using PID controllers , 2003, 2003 European Control Conference (ECC).

[10]  Jürgen Ackermann,et al.  Stable polyhedra in parameter space , 2003, Autom..

[11]  Chyi Hwang,et al.  Design of a PID-Deadtime Control for Time-Delay Systems Using the Coefficient Diagram Method , 2002 .

[12]  Chyi Hwang,et al.  A note on time-domain simulation of feedback fractional-order systems , 2002, IEEE Trans. Autom. Control..

[13]  Shankar P. Bhattacharyya,et al.  New results on the synthesis of PID controllers , 2002, IEEE Trans. Autom. Control..

[14]  Jeng-Fan Leu,et al.  Design of Optimal Fractional-Order PID Controllers , 2002 .

[15]  Richard Marquez,et al.  An extension of predictive control, PID regulators and Smith predictors to some linear delay systems , 2002 .

[16]  Shankar P. Bhattacharyya,et al.  PI stabilization of first-order systems with time delay , 2001, Autom..

[17]  F. G. Shinskey PID-Deadtime Control of Distributed Processes , 2000 .

[18]  Tore Hägglund,et al.  Advances in Pid Control , 1999 .

[19]  Cheng-Ching Yu,et al.  Autotuning of PID Controllers: Relay Feedback Approach , 1999 .

[20]  Shankar P. Bhattacharyya,et al.  A linear programming characterization of all stabilizing PID controllers , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[21]  M. Chidambaram,et al.  Design of P and PI controllers for unstable first-order plus time delay systems , 1994 .

[22]  I-Lung Chien,et al.  Simplified IMC-PID tuning rules , 1994 .

[23]  C. C. Hang,et al.  A new Smith predictor for controlling a process with an integrator and long dead-time , 1994, IEEE Trans. Autom. Control..

[24]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[25]  M. Nakagawa,et al.  Basic Characteristics of a Fractance Device , 1992 .

[26]  Annraoi M. de Paor,et al.  Extension and partial optimization of a modified Smith predictor and controller for unstable processes with time delay , 1989 .

[27]  M. O'Malley,et al.  Controllers of Ziegler-Nichols type for unstable process with time delay , 1989 .

[28]  A. Paor A modified Smith predictor and controller for unstable processes with time delay , 1985 .

[29]  A. K. Mohanty,et al.  The Delay Controller: An Improvement Over PID Regulator , 1982 .

[30]  Allan M. Krall,et al.  On the real parts of zeros of exponential polynomials , 1964 .

[31]  WangZhenlei,et al.  Digital implementation of fractional order PID controller and its application , 2005 .

[32]  Kok Kiong Tan,et al.  Geometrical error compensation of machines with significant random errors. , 2005, ISA transactions.

[33]  Neil Munro,et al.  Fast calculation of stabilizing PID controllers , 2003, Autom..

[34]  W.K.S. Tang,et al.  Nonlinear Noninteger Order Circuits and Systems-An Introduction [Book Review] , 2003, IEEE Circuits and Systems Magazine.

[35]  Aidan O'Dwyer,et al.  Handbook of PI and PID controller tuning rules , 2003 .

[36]  Shankar P. Bhattacharyya,et al.  Structure and synthesis of PID controllers , 2000 .

[37]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[38]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[39]  O. J. M. Smith,et al.  A controller to overcome dead time , 1959 .