Compressed sensing under strong noise. Application to imaging through multiply scattering media
暂无分享,去创建一个
Antoine Liutkus | Laurent Daudet | Sylvain Gigan | David Martina | S. Gigan | L. Daudet | A. Liutkus | D. Martina
[1] Wenlin Gong,et al. Ghost imaging lidar via sparsity constraints , 2012, 1203.3835.
[2] Ting Sun,et al. Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..
[3] Rémi Gribonval,et al. Blind Sensor Calibration in Sparse Recovery , 2013 .
[4] Javier de Diego,et al. Proceedings oh the International Congress of Mathematicians: Madrid, August 22-30,2006 : invited lectures , 2006 .
[5] A. Goetschy,et al. Filtering random matrices: the effect of incomplete channel control in multiple scattering. , 2013, Physical review letters.
[6] Thomas Strohmer,et al. General Deviants: An Analysis of Perturbations in Compressed Sensing , 2009, IEEE Journal of Selected Topics in Signal Processing.
[7] Laurent Daudet,et al. Imaging With Nature: Compressive Imaging Using a Multiply Scattering Medium , 2013, Scientific Reports.
[8] Bhaskar D. Rao,et al. Sparse solutions to linear inverse problems with multiple measurement vectors , 2005, IEEE Transactions on Signal Processing.
[9] David R. Smith,et al. Metamaterial Apertures for Computational Imaging , 2013, Science.
[10] Rémi Gribonval,et al. Blind calibration for compressed sensing by convex optimization , 2011, 1111.7248.
[11] A. Mosk,et al. Focusing coherent light through opaque strongly scattering media. , 2007, Optics letters.
[12] S. Popoff,et al. Controlling light through optical disordered media: transmission matrix approach , 2011, 1107.5285.
[13] E. Candès. The restricted isometry property and its implications for compressed sensing , 2008 .
[14] Yonina C. Eldar,et al. Average Case Analysis of Multichannel Sparse Recovery Using Convex Relaxation , 2009, IEEE Transactions on Information Theory.
[15] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[16] S. Popoff,et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. , 2009, Physical review letters.
[17] Michael Elad,et al. Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .
[18] Stephen A. Benton,et al. Physical one-way functions , 2001 .
[19] Miguel Moscoso,et al. Imaging Strong Localized Scatterers with Sparsity Promoting Optimization , 2013, SIAM J. Imaging Sci..
[20] H. Rauhut,et al. Atoms of All Channels, Unite! Average Case Analysis of Multi-Channel Sparse Recovery Using Greedy Algorithms , 2008 .
[21] E.J. Candes. Compressive Sampling , 2022 .
[22] Wai Lam Chan,et al. A single-pixel terahertz imaging system based on compressed sensing , 2008 .
[23] Florent Krzakala,et al. Probabilistic reconstruction in compressed sensing: algorithms, phase diagrams, and threshold achieving matrices , 2012, ArXiv.
[24] Gitta Kutyniok,et al. 1 . 2 Sparsity : A Reasonable Assumption ? , 2012 .
[25] Rémi Gribonval,et al. Blind phase calibration in sparse recovery , 2013, 21st European Signal Processing Conference (EUSIPCO 2013).
[26] O. Katz,et al. Compressive ghost imaging , 2009, 0905.0321.
[27] Karsten P. Ulland,et al. Vii. References , 2022 .
[28] David L Donoho,et al. Compressed sensing , 2006, IEEE Transactions on Information Theory.
[29] A. Mosk,et al. Exploiting disorder for perfect focusing , 2009, 0910.0873.
[30] R. Fergus,et al. Random Lens Imaging , 2006 .
[31] J. Goodman. Introduction to Fourier optics , 1969 .