Formation and preservation of colluvial sedimentary breccias during early extension: processes and facies organization

. In this study, we focused on the formation and preservation processes of colluvial sedimen-tarybrecciaswithinanextensionalcontext.Thebrecciasstudiedinthiswork(fromCreteandthePyre- nees) are characterized by poorly sorted polygenic deposits of highly angular carbonate clasts whose size ranges from pebbles to blocks measuring several millimeters to several meters. This study shows that the colluvial sedimentary breccias were formed during extensional tectonics and are spatially associated with large-throw normal fault. They are related to the creation of a substantial topography in the footwall of the normal fault followed by its collapse on the hanging wall, leading to fast sediment accumulationandpreservation.Thesebrecciasareorganized,withpebble-tocobble-sizedclastsnear the slope of the fault while the mega-clasts, such as boulders and blocks, are preserved away from the slope. Such a clast size organization is indicative of a dry rockfall process and is opposite to that of alluvial fan systems dominated by gravity process involving water. This study also revealed that the breccias from the NE of the Pyrenees, encountered on both flanks of the Bas Agly syncline and previously attributed to the Lower Cretaceous, are related to a first phase of extension during the Upper Jurassic. flancs du synclinal du Bas Agly, qui sont intercalées entre des calcaires du Jurassique supérieur et du Berriasien, sont liées à une phase d’extension précoce durant le Jurassique supérieur.

[1]  L. Jolivet,et al.  Basement‐Cover Decoupling During the Inversion of a Hyperextended Basin: Insights From the Eastern Pyrenees , 2021, Tectonics.

[2]  M. Calvet,et al.  Denudation history and palaeogeography of the Pyrenees and their peripheral basins: an 84-million-year geomorphological perspective , 2020 .

[3]  J. Vergés,et al.  Evolution of a salt-rich transtensional rifted margin, eastern North Pyrenees, France , 2020, Journal of the Geological Society.

[4]  M. Bovis The morphology and mechanics of large-scale slope movement, with particular reference to southwest British Columbia , 2020 .

[5]  D. Stockli,et al.  Thermotectonic Evolution of the North Pyrenean Agly Massif During Early Cretaceous Hyperextension Using Multi‐mineral U‐Pb Thermochronometry , 2019, Tectonics.

[6]  R. Pope,et al.  TECTONO-SEDIMENTARY EVOLUTION AND RATES OF TECTONIC UPLIFT OF THE SFAKIA COASTAL ZONE, SOUTHWESTERN CRETE , 2018, Bulletin of the Geological Society of Greece.

[7]  Anupam Sharma,et al.  A brief review on breccia: it's contrasting origin and diagnostic signatures , 2018, Solid Earth Sciences.

[8]  Maxime Ducoux Structure, thermicité et évolution géodynamique de la Zone Interne Métamorphique des Pyrénées , 2017 .

[9]  R. Pope,et al.  A chronology of alluvial fan response to Late Quaternary sea level and climate change, Crete , 2016, Quaternary Research.

[10]  A. Vauchez,et al.  Basement - Cover decoupling and progressive exhumation of metamorphic sediments at hot rifted margin. Insights from the Northeastern Pyrenean analog , 2016 .

[11]  A. Vauchez,et al.  Very high geothermal gradient during mantle exhumation recorded in mylonitic marbles and carbonate breccias from a Mesozoic Pyrenean palaeomargin (Lherz area, North Pyrenean Zone, France) , 2016 .

[12]  J. Ringenbach,et al.  New sedimentological, structural and paleo-thermicity data in the Boucheville Basin (eastern North Pyrenean Zone, France) , 2016 .

[13]  Roman Chelalou Formation et évolution du bassin de Boucheville, implication sur l'évolution tectonique, métamorphique et sédimentaire des bassins sédimentaires mésozoïques du Nord-Est des Pyrénées , 2015 .

[14]  Mathieu Martinez,et al.  Orbital pacing of carbon fluxes by a ∼9-My eccentricity cycle during the Mesozoic , 2015, Proceedings of the National Academy of Sciences.

[15]  P. Monié,et al.  High-temperature metamorphism during extreme thinning of the continental crust: a reappraisal of the North Pyrenean passive paleomargin , 2015 .

[16]  F. D. De Blasio,et al.  Dynamics of grains falling on a sloping granular medium: application to the evolution of a talus , 2015 .

[17]  Camille Clerc EVOLUTION DU DOMAINE NORD-PYRENEEN AU CRETACE. AMINCISSEMENT CRUSTAL EXTREME ET THERMICITE ELEVEE: UN ANALOGUE POUR LES MARGES PASSIVES , 2012 .

[18]  Y. Lagabrielle,et al.  Exhumation of subcontinental mantle rocks: evidence from ultramafic-bearing clastic deposits nearby the Lherz peridotite body, French Pyrenees , 2012 .

[19]  A. Harvey,et al.  The coupling status of alluvial fans and debris cones: a review and synthesis , 2012 .

[20]  T. Klein,et al.  Constraints on the geodynamical evolution of Crete: insights from illite crystallinity, Raman spectroscopy and calcite twinning above and below the ‘Cretan detachment’ , 2012, International Journal of Earth Sciences.

[21]  M. Joachimski,et al.  Climatic ups and downs in a disturbed Jurassic world , 2011 .

[22]  Riccardo Caputo,et al.  Active faulting on the island of Crete (Greece) , 2010 .

[23]  J. Proust,et al.  Control of Alluvial Sedimentation at Foreland-Basin Active Margins: A Case Study from the Northeastern Ebro Basin (Southeastern Pyrenees, Spain) , 2010 .

[24]  D. Sanders Sedimentary facies and progradational style of a Pleistocene talus-slope succession, Northern Calcareous Alps, Austria , 2010 .

[25]  F. Gasse,et al.  Tectonic and climatic control on evolution of rift lakes in the Central Kenya Rift, East Africa , 2009 .

[26]  J. Huggett,et al.  Late Jurassic palaeoclimatic change from clay mineralogy and gamma-ray spectrometry of the Kimmeridge Clay, Dorset, UK , 2009, Journal of the Geological Society.

[27]  L. Lavier,et al.  Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the western Pyrenees , 2009 .

[28]  W. Nemec,et al.  Quaternary Alluvial Fans in Southwestern Crete: Sedimentation Processes and Geomorphic Evolution , 2009 .

[29]  J. Ghienne,et al.  Alluvial fan development and morpho‐tectonic evolution in response to contractional fault reactivation (Late Cretaceous–Palaeocene), Provence, France , 2009 .

[30]  J. Kramers,et al.  Quaternary carbonate-rocky talus slope successions (Eastern Alps, Austria): sedimentary facies and facies architecture , 2009 .

[31]  G. Ferrier,et al.  Clarifying stages of alluvial fan evolution along the Sfakian , 2008 .

[32]  T. Minshull,et al.  Tectonosedimentary evolution of the deep Iberia‐Newfoundland margins: Evidence for a complex breakup history , 2007 .

[33]  M. Brandon,et al.  Raman spectroscopic carbonaceous material thermometry of low-grade metamorphic rocks: Calibration and application to tectonic exhumation in Crete, Greece [rapid communication] , 2005 .

[34]  Erik Flügel,et al.  Microfacies of Carbonate Rocks: Analysis, Interpretation and Application , 2004 .

[35]  C. Passchier,et al.  Boudinage classification: end-member boudin types and modified boudin structures , 2004 .

[36]  Erik Flügel,et al.  Microfacies of Carbonate Rocks , 2004 .

[37]  M. Ramos,et al.  Talus instability in a recent deglaciation area and its relationship to buried ice and snow cover evolution (picacho del veleta, sierra nevada, spain) , 2003 .

[38]  M. Seidel Tectono-sedimentary evolution of middle Miocene supra-detachment basins (western Crete, Greece) , 2003 .

[39]  M. Brandon,et al.  Exhumation of high-pressure metamorphic rocks within an active convergent margin , Crete , Greece : A field guide , 2003 .

[40]  W. Spakman,et al.  Pyrenean orogeny and plate kinematics , 2002 .

[41]  T. C. Blair,et al.  Grain-Size and Textural Classification of Coarse Sedimentary Particles , 1999 .

[42]  B. Stöckhert,et al.  Miocene high-pressure metamorphic rocks of Crete, Greece: rapid exhumation by buoyant escape , 1999, Geological Society, London, Special Publications.

[43]  A. Alexopoulos,et al.  Bioistratigraphical and sedimentological study of Upper Senonian–Lower Eocene sediments of Tripolitza Platform in central Crete (Greece) , 1998 .

[44]  B. Stöckhert,et al.  Thermochronology of the high-pressure metamorphic rocks of Crete, Greece: Implications for the speed of tectonic processes , 1998 .

[45]  L. Jolivet,et al.  Miocene detachment in Crete and exhumation P‐T‐t paths of high‐pressure metamorphic rocks , 1996 .

[46]  Philippe Coussot,et al.  Recognition, classification and mechanical description of debris flows , 1996 .

[47]  T. C. Blair,et al.  Quaternary alluvial fans in southwestern Crete: sedimentation processes and geomorphic evolution , 1995 .

[48]  J. Brun,et al.  Inversion of the Broad Fourteens Basin (offshore Netherlands), a small-scale model investigation , 1995 .

[49]  John G. McPherson,et al.  Alluvial fans and their natural distinction from rivers based on morphology , 1995 .

[50]  A. Kilias,et al.  Tertiary extension of continental crust and uplift of Psiloritis metamorphic core complex in the central part of the Hellenic Arc (Crete, Greece) , 1994, Geologische Rundschau.

[51]  F. Colombo Normal and reverse unroofing sequences in syntectonic conglomerates as evidence of progressive basinward deformation , 1994 .

[52]  A. Kilias,et al.  Postnappe stacking extension and exhumation of high‐pressure/low‐temperature rocks in the island of Crete, Greece , 1994 .

[53]  T. C. Blair,et al.  Alluvial Fan Processes and Forms , 1994 .

[54]  O. Vidal,et al.  Carpholite, sudoite, and chloritoid in low-grade high-pressure metapelites from Crete and the Peloponnese, Greece , 1992 .

[55]  V. Cronin Chapter 1: Compound landslides: Nature and hazard potential of secondary landslides within host landslides , 1992 .

[56]  W. Dietrich,et al.  Late Quaternary history of colluvial deposition and erosion in hollows, central California Coast Ranges , 1990 .

[57]  E. Debroas Le flysch noir albo-cenomanien temoin de la structuration albienne a senonienne de la Zone nord-pyreneenne en Bigorre (Hautes-Pyrenees, France) , 1990 .

[58]  A. Leyreloup,et al.  High temperature-low pressure Cretaceous metamorphism related to crustal thinning (Eastern North Pyrenean Zone, France) , 1990 .

[59]  C. B. Beaty Great big boulders I have known , 1989 .

[60]  C. Depolo,et al.  Energetic earthquakes and boulders on alluvial fans: Is there a connection? , 1989 .

[61]  R. W. Fleming,et al.  Mobilization of debris flows from soil slips, San Francisco Bay region, California , 1987 .

[62]  M. Bonneau Correlation of the Hellenide nappes in the south-east Aegean and their tectonic reconstruction , 1984, Geological Society, London, Special Publications.

[63]  R. Hall,et al.  The significance of Crete for the evolution of the Eastern Mediterranean , 1984, Geological Society, London, Special Publications.

[64]  W. Nemec,et al.  Alluvial and Coastal Conglomerates: Their Significant Features and Some Comments on Gravelly Mass-Flow Deposits , 1984 .

[65]  J. Gardner Accretion rates on some debris slopes in the Mt. Rae area, Canadian Rocky Mountains , 1983 .

[66]  R. Hall,et al.  The structure and regional significance of the Talea Ori, Crete , 1983 .

[67]  R. Greiling The metamorphic and structural evolution of the Phyllite-Quartzite Nappe of western Crete , 1982 .

[68]  N. Caine,et al.  The Rainfall Intensity - Duration Control of Shallow Landslides and Debris Flows , 1980 .

[69]  R. Stock,et al.  Contemporary sedimentary environments on Baffin Island, N. W. T., Canada ; Debris slope accumulations. , 1979 .

[70]  J. Angelier,et al.  Determination of the mean principal directions of stresses for a given fault population , 1979 .

[71]  M. Mattauer,et al.  Tectonique des plaques et Pyrenees; sur le fonctionnement de la faille transformante nord-pyreneenne; comparaisons avec des modeles actuels , 1978 .

[72]  D. Varnes SLOPE MOVEMENT TYPES AND PROCESSES , 1978 .

[73]  Russell H. Campbell,et al.  Soil slips, debris flows, and rainstorms in the Santa Monica Mountains and vicinity, southern California , 1975 .

[74]  R. H. Campbell,et al.  Debris flows originating from soil slips during rainstorms in Southern California* , 1974, Quarterly Journal of Engineering Geology.

[75]  J. Bones Process and Sediment Size Arrangement on High Arctic Talus, Southwest Devon Island, N.W.T., Canada , 1973 .

[76]  J. Gardner Debris slope form and processes in the Lake Louise district : a high mountain area. , 1968 .

[77]  Melville R Mudge,et al.  Rockfall-Avalanche and Rockslide-Avalanche Deposits at Sawtooth Ridge, Montana , 1965 .

[78]  Anders Rapp,et al.  Recent Development of Mountain Slopes in Kärkevagge and Surroundings, Northern Scandinavia , 1960 .

[79]  H. Ahlmann,et al.  Landslides and Related Phenomena , 1938 .

[80]  F. Drew Alluvial and Lacustrine Deposits and Glacial Records of the Upper-Indus Basin , 1873, Quarterly Journal of the Geological Society of London.