A study on ionospheric scintillation near the EIA crest in relation to equatorial electrodynamics

Equatorial electrojet (EEJ) data, which are considered as a proxy index of equatorial electric field, are analyzed in conjunction with equatorial ionosonde, total electron content (TEC) and scintillation data near the equatorial ionization anomaly (EIA) crest for the equinoctial months of high solar activity years (2011–2012) to identify any precursor index of postsunset evolution of equatorial electron density irregularities and subsequent occurrence of scintillation near the northern EIA crest. Only geomagnetically quiet and normal electrojet days are considered. The diurnal profiles of EEJ on the scintillation days exhibit a secondary enhancement in the afternoon to presunset hours following diurnal peaks. A series of electrodynamical processes conducive for generation of irregularities emerge following secondary enhancement of EEJ. Latitudinal profile of TEC exhibits resurgence in EIA structure around the postsunset period. Diurnal TEC profile near the EIA crest resembles postsunset secondary enhancement on the days with afternoon enhancement in EEJ. Occurrence of equatorial spread F and postsunset scintillation near the EIA crest seems to follow the secondary enhancement events in EEJ. Both the magnitude and duration of enhanced EEJ are found to be important for postsunset intensification of EIA structure and subsequent occurrence of equatorial irregularities. A critical value combining the two may be considered an important precursor for postsunset occurrence of scintillation near the EIA crest. The results are validated using archived data for the years 1989–1990 and explained in terms of modulation effects of enhanced equatorial fountain.

[1]  P. Alken,et al.  Estimating the daytime Equatorial Ionization Anomaly strength from electric field proxies , 2008 .

[2]  J. Meriwether,et al.  Comparison of zonal neutral winds with equatorial plasma bubble and plasma drift velocities , 2013 .

[3]  S. Alex,et al.  Evolution of equatorial irregularities under varying electrodynamical conditions: A multitechnique case study from Indian longitude zone , 2012 .

[4]  E. R. Paula,et al.  Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F , 1999 .

[5]  J. Bittencourt,et al.  IONIZATION DRIFT VELOCITIES IN THE EQUATORIAL F REGION , 1981 .

[6]  B. M. Reddy,et al.  Nighttime VHF scintillations at 23°N magnetic latitude and their association with equatorial F region irregularities , 1986 .

[7]  N. Spencer,et al.  An equatorial temperature and wind anomaly (ETWA) , 1991 .

[8]  A. DasGupta,et al.  Long‐term observations of VHF scintillation and total electron content near the crest of the equatorial anomaly in the Indian longitude zone , 1999 .

[9]  G. Crowley,et al.  Simulation of the pre‐reversal enhancement in the low latitude vertical ion drifts , 2000 .

[10]  D. Pallamraju,et al.  Role of the equatorial ionization anomaly in the development of the evening prereversal enhancement of the equatorial zonal electric field , 2009 .

[11]  S. Basu,et al.  Day‐to‐day variability of the equatorial ionization anomaly and scintillations at dusk observed by GUVI and modeling by SAMI3 , 2009 .

[12]  Abhijeet Dasgupta,et al.  Equatorial scintillations in relation to the development of ionization anomaly , 2006 .

[13]  T. Maruyama,et al.  Relationships between pre-sunset electrojet strength, pre-reversal enhancement and equatorial spread-F onset , 2010 .

[14]  Jules Aarons,et al.  A proposed index for measuring ionospheric scintillations , 1969 .

[15]  D. Crain,et al.  Effects of electrical coupling on equatorial ionospheric plasma motions: When is the F region a dominant driver in the low-latitude dynamo? , 1993 .

[16]  Ronald F. Woodman,et al.  Vertical drift velocities and east‐west electric fields at the magnetic equator , 1970 .

[17]  Y. Otsuka,et al.  Physical mechanisms of the ionospheric storms at equatorial and higher latitudes during the recovery phase of geomagnetic storms , 2013 .

[18]  J. A. Whalen,et al.  An equatorial bubble: Its evolution observed in relation to bottomside spread F and to the Appleton anomaly , 2000 .

[19]  Jules Aarons,et al.  On the coexistence of kilometer- and meter-scale irregularities in the nighttime equatorial F region , 1978 .

[20]  S. C. Garg,et al.  Evolution and dynamics of equatorial plasma bubbles: Relationships to ExB drift, postsunset total electron content enhancements, and equatorial electrojet strength , 2003 .

[21]  M. A. Abdu,et al.  Outstanding problems in the equatorial ionosphere–thermosphere electrodynamics relevant to spread F , 2001 .

[22]  Arthur D. Richmond,et al.  Low-latitude plasma drifts from a simulation of the global atmospheric dynamo , 1993 .

[23]  G. Haerendel,et al.  The role of the equatorial electrojet in the evening ionosphere , 1992 .

[24]  J. MacDougall The Equatorial Ionospheric Anomaly and the Equatorial Electrojet , 1969 .

[25]  H. Lühr,et al.  Characteristics of F‐region dynamo currents deduced from CHAMP magnetic field measurements , 2010 .

[26]  I. Batista,et al.  Equatorial evening prereversal electric field enhancement and sporadic E layer disruption: A manifestation of E and F region coupling , 2003 .

[27]  H. Kil,et al.  Dependence of the evening prereversal enhancement of the vertical plasma drift on geophysical parameters , 2011 .

[28]  Emanoel Costa,et al.  250 MHz/GHz Scintillation Parameters in the Equatorial, Polar, and Auroral Environments , 1986, IEEE J. Sel. Areas Commun..

[29]  J. Sastri On the development of abnormally large postsunset upward drift of equatorial F region under quiet geomagnetic conditions , 1998 .

[30]  G. Crowley,et al.  On the origin of pre-reversal enhancement of the zonal equatorial electric field , 2009 .

[31]  S. C. Garg,et al.  Multistation study of nighttime scintillations in low latitudes: Evidence of control by equatorial F region irregularities , 1984 .

[32]  Cesar E. Valladares,et al.  Scintillations, plasma drifts, and neutral winds in the equatorial ionosphere after sunset , 1996 .

[33]  A. Nagy,et al.  Photoelectron fluxes in the ionosphere , 1970 .

[34]  R. Sridharan,et al.  Precursor to equatorial spread-F in OI 630.0 nm dayglow , 1994 .

[35]  Keith M. Groves,et al.  Specification and forecasting of scintillations in communication/navigation links: current status and future plans , 2002 .

[36]  M. Hairston,et al.  Generation and characteristics of equatorial plasma bubbles detected by the C/NOFS satellite near the sunset terminator , 2012 .

[37]  Ronald F. Woodman,et al.  Equatorial spread F: Implications of VHF radar observations , 1970 .

[38]  E. Kudeki,et al.  Estimating daytime vertical ExB drift velocities in the equatorial F‐region using ground‐based magnetometer observations , 2002 .

[39]  R. Hajra,et al.  Electrojet control of ambient ionization near the crest of the equatorial anomaly in the Indian zone , 2009 .

[40]  R. Woodman,et al.  Seeding and layering of equatorial spread F by gravity waves , 1990 .

[41]  D. Hysell,et al.  JULIA radar studies of equatorial spread F , 1998 .

[42]  O. Beaujardiere,et al.  C/NOFS: a Mission to Forecast Scintillations , 2004 .

[43]  E. Araujo‐Pradere,et al.  A study of the strong linear relationship between the equatorial ionization anomaly and the prereversal E × B drift velocity at solar minimum , 2011 .

[44]  M. Nageswararao,et al.  Role of equatorial ionization anomaly in the initiation of equatorial spread F , 1988 .

[45]  B. Murthy,et al.  Effect of electrojet on the total electron content of the ionosphere over the Indian subcontinent , 1977, Nature.

[46]  John A. Klobuchar,et al.  Ionospheric electron content within the equatorial F2 layer anomaly belt , 1990 .

[47]  R. Sekar,et al.  Effects of vertical winds and electric fields in the nonlinear evolution of equatorial spread F , 1994 .

[48]  Henry Rishbeth,et al.  Polarization fields produced by winds in the equatorial F-region , 1971 .

[49]  R. Hajra,et al.  Electrodynamical control of the ambient ionization near the equatorial anomaly crest in the Indian zone during counter electrojet days , 2009 .

[50]  I. Batista,et al.  Vertical ionization drift velocities and range type spread F in the evening equatorial ionosphere , 1983 .

[51]  H. Chandra,et al.  Geomagnetic storm effects on ionospheric drifts and the equatorial E/sub s/ over the magnetic equator , 1974 .

[52]  C. Denardini,et al.  VHF radar observations of the dip equatorial E-region during sunset in the Brazilian sector , 2006 .

[53]  J. A. Whalen Dependence of the equatorial anomaly and of equatorial spread F on the maximum prereversal E × B drift velocity measured at solar maximum , 2003 .

[54]  S. Akasofu Relationships between the AE and DST indices during geomagnetic storms , 1981 .

[55]  R. Heelis,et al.  Electrodynamics in the low and middle latitude ionosphere: a tutorial , 2004 .

[56]  G. Sethia,et al.  Equatorial electrojet control of the low latitude ionosphere. , 1980 .

[57]  Ronald F. Woodman,et al.  Radar observations of F region equatorial irregularities , 1976 .

[58]  T. G. Cowling,et al.  The Electrical Conductivity of an Ionised Gas in the Presence of a Magnetic Field , 1932 .