Complete minimal logarithmic energy asymptotics for points in a compact interval: a consequence of the discriminant of Jacobi polynomials
暂无分享,去创建一个
[1] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[2] Zur approximation des transfiniten durchmessers bei bis auf ecken analytischen geschlossenen jordankurven , 1974 .
[3] Über die Faberschen Polynome schlichter Funktionen , 1964 .
[4] E. Saff,et al. The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere , 2012, 1202.4037.
[5] Masato Kimura,et al. Quantitative Estimate of the Continuum Approximations of Interacting Particle Systems in One Dimension , 2021, SIAM J. Math. Anal..
[6] S. Serfaty,et al. Crystallization for Coulomb and Riesz interactions as a consequence of the Cohn-Kumar conjecture , 2019, Proceedings of the American Mathematical Society.
[7] S. Serfaty,et al. 2D Coulomb Gases and the Renormalized Energy , 2012, 1201.3503.
[8] Explicit formulas for the Riesz energy of the $N$th roots of unity , 2011, 1105.5530.
[9] P. Dragnev,et al. On point-mass Riesz external fields on the real axis , 2019, Journal of Mathematical Analysis and Applications.
[10] M. Skriganov. POINT DISTRIBUTIONS IN TWO‐POINT HOMOGENEOUS SPACES , 2019, Mathematika.
[11] Victor S. Adamchik,et al. Polygamma functions of negative order , 1998 .
[12] E. Saff,et al. The Riesz energy of the Nth roots of unity: an asymptotic expansion for large N , 2008, 0808.1291.
[13] Johann S. Brauchart,et al. Menke points on the real line and their connection to classical orthogonal polynomials , 2010, J. Comput. Appl. Math..
[14] Carlos Beltrán,et al. The Diamond ensemble: A constructive set of spherical points with small logarithmic energy , 2020, J. Complex..
[15] Johann S. Brauchart,et al. Distributing many points on spheres: Minimal energy and designs , 2014, J. Complex..
[16] S. V. Borodachov,et al. Lower Order Terms of the Discrete Minimal Riesz Energy on Smooth Closed Curves , 2012, Canadian Journal of Mathematics.
[17] S. Serfaty,et al. Higher‐Dimensional Coulomb Gases and Renormalized Energy Functionals , 2013, 1307.2805.
[18] Florian Pausinger. Greedy energy minimization can count in binary: point charges and the van der Corput sequence , 2019, Annali di Matematica Pura ed Applicata (1923 -).
[19] Mourad E. H. Ismail,et al. Special functions, q-series, and related topics , 1997 .
[20] Steven R. Finch,et al. Mathematical constants , 2005, Encyclopedia of mathematics and its applications.
[21] C. Beltr'an,et al. A sequence of polynomials with optimal condition number , 2019, Journal of the American Mathematical Society.
[22] Alexander Barg,et al. Stolarsky's invariance principle for finite metric spaces , 2020, ArXiv.
[23] J. Dick,et al. A simple proof of Stolarsky’s invariance principle , 2011, 1101.4448.
[24] E. Saff,et al. Distributing many points on a sphere , 1997 .
[25] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[26] Douglas P Hardin,et al. Discrete Energy on Rectifiable Sets , 2019, Springer Monographs in Mathematics.
[27] E. Saff,et al. Discretizing Manifolds via Minimum Energy Points , 2004 .
[28] Masanori Katsurada,et al. Power series and asymptotic series associated with the Lerch zeta-function , 1998 .
[29] Carlos Beltrán. A Facility Location Formulation for Stable Polynomials and Elliptic Fekete Points , 2015, Found. Comput. Math..
[30] E. Saff,et al. DISCRETE ENERGY ASYMPTOTICS ON A RIEMANNIAN CIRCLE , 2009, 0912.4720.
[31] Carlos Beltrán,et al. Energy and discrepancy of rotationally invariant determinantal point processes in high dimensional spheres , 2015, J. Complex..
[32] Edward B. Saff,et al. Asymptotics of greedy energy points , 2009, Math. Comput..
[33] D. A. Dunnett. Classical Electrodynamics , 2020, Nature.
[34] Etienne Sandier,et al. Renormalized Energy and Asymptotic Expansion of Optimal Logarithmic Energy on the Sphere , 2014, 1404.4485.
[35] Henry Cohn,et al. The sphere packing problem in dimension 8The sphere packing problem in dimension 8 , 2016, 1603.04246.
[36] Th. Clausen. Über Interpolation. , 2009 .
[37] Mourad E. H. Ismail,et al. An electrostatics model for zeros of general orthogonal polynomials , 2000 .
[38] V. Maymeskul,et al. Asymptotics for Minimal Discrete Riesz Energy on Curves in ℝ d , 2004, Canadian Journal of Mathematics.
[39] Henry Cohn,et al. Universally optimal distribution of points on spheres , 2006, math/0607446.
[40] Ryan Matzke,et al. Energy on spheres and discreteness of minimizing measures , 2019, Journal of Functional Analysis.
[41] Maya Stoyanova,et al. Energy bounds for codes and designs in Hamming spaces , 2015, Designs, Codes and Cryptography.
[42] Leo P. Kadanoff,et al. Discrete Charges on a Two Dimensional Conductor , 2004 .
[43] S. Serfaty,et al. NEXT ORDER ASYMPTOTICS AND RENORMALIZED ENERGY FOR RIESZ INTERACTIONS , 2014, Journal of the Institute of Mathematics of Jussieu.
[44] S. Serfaty,et al. 1D log gases and the renormalized energy: crystallization at vanishing temperature , 2013, 1303.2968.
[45] Extremalpunkte und konforme Abbildung , 1971 .
[46] F. Marcellán,et al. Electrostatic models for zeros of polynomials: Old, new, and some open problems , 2005 .
[47] Thomas Leblé. Logarithmic, Coulomb and Riesz Energy of Point Processes , 2015, 1509.05253.