Asymptotic estimates and nonexistence results for critical problems with Hardy term involving Grushin-type operators

[1]  Annunziata Loiudice Optimal decay of p-Sobolev extremals on Carnot groups , 2019, Journal of Mathematical Analysis and Applications.

[2]  Annunziata Loiudice Local Behavior of Solutions to Subelliptic Problems with Hardy Potential on Carnot Groups , 2018 .

[3]  D. T. Luyen,et al.  Existence of infinitely many solutions for semilinear degenerate Schrödinger equations , 2018 .

[4]  S. Sonner,et al.  Hardy type inequalities for Δλ-Laplacians , 2016 .

[5]  Annunziata Loiudice Critical growth problems with singular nonlinearities on Carnot groups , 2015 .

[6]  Qiaohua Yang,et al.  Improved Hardy inequalities for Grushin operators , 2015 .

[7]  Chunhua Wang,et al.  On the Grushin critical problem with a cylindrical symmetry , 2015, Advances in Differential Equations.

[8]  I. Kombe On the nonexistence of positive solutions to doubly nonlinear equations for Baouendi-Grushin operators , 2013 .

[9]  E. Lanconelli,et al.  On semilinear Δλ-Laplace equation , 2012 .

[10]  N. M. Tri,et al.  Nontrivial solutions to boundary value problems for semilinear strongly degenerate elliptic differential equations , 2012 .

[11]  D. Monticelli Maximum principles and the method of moving planes for a class of degenerate elliptic linear operators , 2010 .

[12]  Annunziata Loiudice Lp-weak regularity and asymptotic behavior of solutions for critical equations with singular potentials on Carnot groups , 2010 .

[13]  Annunziata Loiudice Asymptotic behaviour of solutions for a class of degenerate elliptic critical problems , 2009 .

[14]  S. Terracini,et al.  Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential , 2008, 0809.5002.

[15]  N. Garofalo,et al.  Strong Unique Continuation Properties of Generalized Baouendi–Grushin Operators , 2007 .

[16]  R. Monti Sobolev Inequalities for Weighted Gradients , 2006 .

[17]  P. Han Asymptotic behavior of solutions to semilinear elliptic equations with Hardy potential , 2006 .

[18]  Jasun Gong,et al.  The P-laplace equation on a class of grushin-type spaces , 2006 .

[19]  Daomin Cao,et al.  Solutions to critical elliptic equations with multi-singular inverse square potentials , 2006 .

[20]  Annunziata Loiudice Sobolev inequalities with remainder terms for sublaplacians and other subelliptic operators , 2006 .

[21]  R. Monti,et al.  Kelvin transform for Grushin operators and critical semilinear equations , 2006 .

[22]  L. D’Ambrosio Hardy inequalities related to Grushin type operators , 2003 .

[23]  S. Lucente,et al.  Nonlinear Liouville theorems for Grushin and Tricomi operators , 2003 .

[24]  V. Felli,et al.  A Note on Regularity of Solutions to Degenerate Elliptic Equations of Caffarelli-Kohn-Nirenberg Type , 2003, math/0306373.

[25]  V. Felli,et al.  COMPACTNESS AND EXISTENCE RESULTS FOR DEGENERATE CRITICAL ELLIPTIC EQUATIONS , 2003, math/0306363.

[26]  E. Jannelli,et al.  The Role Played by Space Dimension in Elliptic Critical Problems , 1999 .

[27]  W. Beckner On the Grushin operator and hyperbolic symmetry , 1999, math/9903126.

[28]  Susanna Terracini,et al.  On positive entire solutions to a class of equations with a singular coefficient and critical exponent , 1996, Advances in Differential Equations.

[29]  N. Garofalo Unique Continuation for a Class of Elliptic Operators Which Degenerate on a Manifold of Arbitrary Codimension , 1993 .

[30]  Jingbo Dou,et al.  HARDY-SOBOLEV TYPE INEQUALITIES FOR GENERALIZED BAOUENDI-GRUSHIN OPERATORS , 2007 .

[31]  D. Smets Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities , 2005 .

[32]  F. Lascialfari,et al.  Compact embedding of a degenerate Sobolev space and existence of entire solutions to a semilinear equation for a Grushin-type operator , 2002 .

[33]  E. Lanconelli,et al.  Existence and nonexistence results for semilinear equations on the Heisenberg group , 1992 .

[34]  B. Franchi,et al.  An embedding theorem for sobolev spaces related to non-smooth vector fieldsand harnack inequality , 1984 .

[35]  Bruno Franchi,et al.  Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients , 1983 .