Employing Multiple CUDA Devices to Accelerate LTL Model Checking

Recently, the CUDA technology has been used to accelerate many computation demanding tasks. For example, in our previous work we have shown how CUDA technology can be employed to accelerate the process of Linear Temporal Logic (LTL) Model Checking. While the raw computing power of a CUDA enabled device is tremendous, the applicability of the technology is quite often limited to small or middle-sized instances of the problems being solved. This is because the memory that a single device is equipped with, is simply not large enough to cope with large or realistic instances of the problem, which is also the case of our CUDA-aware LTL Model Checking solution. In this paper we suggest how to overcome this limitations by employing multiple (two in our case) CUDA devices for acceleration of our fine-grained communication-intensive parallel algorithm for LTL Model Checking.

[1]  Boudewijn R. Haverkort,et al.  On the efficient sequential and distributed generation of very large Markov chains from stochastic Petri nets , 1999, Proceedings 8th International Workshop on Petri Nets and Performance Models (Cat. No.PR00331).

[2]  Dragan Bosnacki,et al.  Efficient Probabilistic Model Checking on General Purpose Graphics Processors , 2009, SPIN.

[3]  Radu Mateescu,et al.  Parallel state space construction for model-checking , 2001, SPIN '01.

[4]  Boudewijn R. Haverkort,et al.  Sequential and Distributed Model Checking of Petri Net Specifications , 2002, PDMC@CONCUR.

[5]  W. Marsden I and J , 2012 .

[6]  Maria Luisa Guerriero,et al.  Electronic Proceedings in Theoretical Computer Science , 2010 .

[7]  Lubos Brim,et al.  CUDA Accelerated LTL Model Checking , 2009, 2009 15th International Conference on Parallel and Distributed Systems.

[8]  Dragan Bosnacki,et al.  The Design of a Multicore Extension of the SPIN Model Checker , 2007, IEEE Transactions on Software Engineering.

[9]  Lubos Brim,et al.  Distributed LTL model-checking in SPIN , 2001, SPIN '01.

[10]  Am Fallturm,et al.  Parallel State Space Search on the GPU , 2009 .

[11]  Lubos Brim,et al.  Scalable Multi-core LTL Model-Checking , 2007, SPIN.

[12]  Doron A. Peled,et al.  All from One, One for All: on Model Checking Using Representatives , 1993, CAV.

[13]  Dragan Bosnacki,et al.  Partial-order reduction for general state exploring algorithms , 2006, International Journal on Software Tools for Technology Transfer.

[14]  Boudewijn R. Haverkort,et al.  Sequential and distributed model checking of Petri nets , 2005, International Journal on Software Tools for Technology Transfer.

[15]  Lubos Brim,et al.  Accepting Predecessors Are Better than Back Edges in Distributed LTL Model-Checking , 2004, FMCAD.

[16]  Kenneth L. McMillan,et al.  Symbolic model checking: an approach to the state explosion problem , 1992 .

[17]  Shin Nakajima,et al.  The SPIN Model Checker : Primer and Reference Manual , 2004 .

[18]  Assaf Schuster,et al.  Distributed Symbolic Model Checking for µ-Calculus , 2001, CAV.

[19]  Christel Baier,et al.  Principles of model checking , 2008 .

[20]  Benedikt Bollig,et al.  Local Parallel Model Checking for the Alternation-Free µ-Calculus , 2002, SPIN.

[21]  Assaf Schuster,et al.  Achieving Speedups in Distributed Symbolic Reachability Analysis Through Asynchronous Computation , 2005, CHARME.

[22]  Lubos Brim,et al.  DiVinE Multi-Core - A Parallel LTL Model-Checker , 2008, ATVA.

[23]  Lubos Brim,et al.  DiVinE-CUDA - A Tool for GPU Accelerated LTL Model Checking , 2009, PDMC.

[24]  Frits W. Vaandrager,et al.  Distributing Timed Model Checking - How the Search Order Matters , 2000, CAV.

[25]  Lubos Brim,et al.  Efficient large-scale model checking , 2009, 2009 IEEE International Symposium on Parallel & Distributed Processing.

[26]  Lubos Brim,et al.  A Time-Optimal On-the-Fly Parallel Algorithm for Model Checking of Weak LTL Properties , 2009, ICFEM.

[27]  S. Edelkamp,et al.  Model Checking via Delayed Duplicate Detection on the GPU , 2008 .

[28]  Benedikt Bollig,et al.  Parallel Model Checking for the Alternation Free µ-Calculus , 2001, TACAS.