Petrogenesis of the Ultrapotassic Fanshan Intrusion in the North China Craton: Implications for Lithospheric Mantle Metasomatism and the Origin of Apatite Ores

The Fanshan intrusion in the North China Craton (NCC) is concentrically zoned with syenite in the core (Unit 1), surrounded by ultramafic rocks (clinopyroxenite and biotite clinopyroxenite; Unit 2), and an outer rim of garnet-rich clinopyroxenite and orthoclase clinopyroxenite and syenite (Unit 3). The intrusive rocks are composed of variable amounts of Ca-rich augite, biotite, orthoclase, melanite, garnet, magnetite and apatite, with minor primary calcite. Monomineralic apatite rocks, nelsonite and glimmerite exclusively occur in Unit 2. Geochemically, the Fanshan rocks are highly enriched in light rare earth elements (LREE) and large ion lithophile elements (LILE), moderately depleted in high field strength elements (HFSE), and have a limited range of Sr‐Nd‐O isotopic compositions. The similar mineralogy, mineral compositions, and trace element characteristics of the three units suggest that all the rocks are co-magmatic. The parental magma is ultrapotassic and is akin to kamafugite. Very low-degree partial melting of metasomatized lithospheric mantle best explains the geochemistry and petrogenesis of the parental magmas of the Fanshan intrusion. We propose that the mantle source may have been metasomatized by a hydrous carbonate-bearing melt, which has imprinted the enriched Sr‐Nd isotopic signature and incompatible element enrichment with conspicuous negative Nb‐Ta‐Zr‐Hf‐Ti anomalies and LREE enrichments. The mantle source enrichment may be correlated with oceanic sediment recycling during southward subduction of the Paleo-Asian oceanic plate during the Carboniferous and Permian. We propose that crystal settling and mechanical sorting combined with repeated primitive magma replenishment and mixing with previously fractionated magma is the predominant process responsible for the formation of the apatite ores.

[1]  S. Foley,et al.  Os-isotope constraints on the dynamics of orogenic mantle: The case of the Central Balkans , 2015 .

[2]  S. V. Petrov,et al.  "Rare earth elements in phoscorites and carbonatites of the Devonian Kola Alkaline Province, Russia: Examples from Kovdor, Khibina, Vuoriyarvi and Turiy Mys complexes" , 2014 .

[3]  J. Bédard Parameterizations of calcic clinopyroxene—Melt trace element partition coefficients , 2014 .

[4]  Y. Niu,et al.  A synthesis and new perspective on the petrogenesis of kamafugites from West Qinling, China, in a global context , 2014 .

[5]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[6]  A. Vona,et al.  The geochemical evolution of clinopyroxene in the Roman Province: A window on decarbonation from wall-rocks to magma , 2013 .

[7]  G. Giordano,et al.  Shift from lamproite-like to leucititic rocks: Sr–Nd–Pb isotope data from the Monte Cimino volcanic complex vs. the Vico stratovolcano, Central Italy , 2013 .

[8]  Zhiqiang Wang,et al.  Geochronology, petrology, and geochemistry of the Yaojiazhuang ultramafic-syenitic complex from the North China Craton , 2013, Science China Earth Sciences.

[9]  D. Jacob,et al.  Recycling plus: A new recipe for the formation of Alpine–Himalayan orogenic mantle lithosphere , 2013 .

[10]  Yue Zhao,et al.  Early Mesozoic alkaline complexes in the northern North China Craton: Implications for cratonic lithospheric destruction , 2012 .

[11]  Bin Chen,et al.  Petrological and Sr–Nd–Os isotopic constraints on the origin of the Fanshan ultrapotassic complex from the North China Craton , 2012 .

[12]  J. Hellstrom,et al.  Iolite: Freeware for the visualisation and processing of mass spectrometric data , 2011 .

[13]  J. Devidal,et al.  Apatite solubility in carbonatitic liquids and trace element partitioning between apatite and carbonatite at high pressure , 2010 .

[14]  H. Dill The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium , 2010 .

[15]  V. Misiti,et al.  Experimental constraints on evolution of leucite-basanite magma at 1 and 10-4 GPa: implications for parental compositions of Roman high-potassium magmas. , 2009 .

[16]  S. Conticelli,et al.  Transition from Ultrapotassic Kamafugitic to Sub-alkaline Magmas: Sr, Nd, and Pb Isotope, Trace Element and 40Ar–39Ar Age Data from the Middle Latin Valley Volcanic Field, Roman Magmatic Province, Central Italy , 2009 .

[17]  G. Chiodini,et al.  Role of non-mantle CO2 in the dynamics of volcano degassing: The Mount Vesuvius example , 2009 .

[18]  M. Tiepolo,et al.  Trace elements and Sr-Nd-Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the Western Mediterranean Region: Genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting , 2009 .

[19]  Z. Lei,et al.  Zircon SHRIMP U-Pb dating of the Fanshan potassic alkaline ultramafite-syenite complex in Hebei Province, China. , 2009 .

[20]  D. Dingwell,et al.  Liquid unmixing kinetics and the extent of immiscibility in the system K2O-CaO-FeO-Al2O3-SiO2 , 2008 .

[21]  D. Dingwell,et al.  Viscosity of magmatic liquids: A model , 2008 .

[22]  F. Gaillard,et al.  Limestone assimilation by basaltic magmas: an experimental re-assessment and application to Italian volcanoes , 2008 .

[23]  R. Romer,et al.  Mediterranean Tertiary lamproites derived from multiple source components in postcollisional geodynamics , 2008 .

[24]  P. Scarlato,et al.  Magma–carbonate interaction: An experimental study on ultrapotassic rocks from Alban Hills (Central Italy) , 2008 .

[25]  V. Morra,et al.  MAJOR- AND TRACE-ELEMENT COMPOSITION OF OLIVINE, PEROVSKITE, CLINOPYROXENE, Cr–Fe–Ti OXIDES, PHLOGOPITE AND HOST KAMAFUGITES AND KIMBERLITES, ALTO PARANAÍBA, BRAZIL , 2008 .

[26]  P. Sylvester Laser Ablation-ICP-MS in the Earth Sciences CURRENT PRACTICES AND OUTSTANDING ISSUES , 2008 .

[27]  Keith Putirka,et al.  Thermometers and Barometers for Volcanic Systems , 2008 .

[28]  G. Heiken Plio‐Quaternary Volcanism in Italy. By Angelo Peccerillo. Heidelberg: Springer, 2005. 365 pages, 145 figures, and CD‐ROM. $139.00 cloth. , 2007 .

[29]  F. Gaillard,et al.  Limestone assimilation and the origin of CO2 emissions at the Alban Hills (Central Italy): Constraints from experimental petrology , 2007 .

[30]  S. Webb,et al.  The combined effects of chlorine and fluorine on the viscosity of aluminosilicate melts , 2007 .

[31]  Dunyi Liu,et al.  Petrogenesis of the Middle Devonian Gushan diorite pluton on the northern margin of the North China block and its tectonic implications , 2007, Geological Magazine.

[32]  R. Carlson,et al.  Chemical and isotopic composition (Os, Pb, Nd, and Sr) of Neogene to Quaternary calc-alkalic, shoshonitic, and ultrapotassic mafic rocks from the Italian peninsula: Inferences on the nature of their mantle sources , 2007 .

[33]  M. Wilson,et al.  Cenozoic volcanism in the Mediterranean area , 2007 .

[34]  Yeadong Kim,et al.  Sr Nd Pb isotopic compositions of the Kovdor phoscorite carbonatite complex, Kola Peninsula, NW Russia , 2006 .

[35]  D. Dingwell,et al.  Immiscible silicate liquid partition coefficients: implications for crystal-melt element partitioning and basalt petrogenesis , 2006 .

[36]  S. Barnes,et al.  Predicting phosphate saturation in silicate magmas: An experimental study of the effects of melt composition and temperature , 2006 .

[37]  P. Scarlato,et al.  Time-dependent geochemistry of clinopyroxene from the Alban Hills (Central Italy): Clues to the source and evolution of ultrapotassic magmas , 2006 .

[38]  Yue-heng Yang,et al.  Contrasting Late Carboniferous and Late Permian–Middle Triassic intrusive suites from the northern margin of the North China craton: Geochronology, petrogenesis, and tectonic implications , 2006 .

[39]  D. Demaiffe,et al.  Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola Alkaline Province: A review , 2005 .

[40]  A. Peccerillo Plio-Quaternary Volcanism in Italy: Petrology, Geochemistry, Geodynamics , 2005 .

[41]  Neng Jiang Petrology and geochemistry of the Shuiquangou syenitic complex, northern margin of the North China Craton , 2005, Journal of the Geological Society.

[42]  Jinlong Ma,et al.  Early Cretaceous gabbroic complex from Yinan, Shandong Province: petrogenesis and mantle domains beneath the North China Craton , 2004 .

[43]  C. Newhall,et al.  Geochemical Constraints on Possible Subduction Components in Lavas of Mayon and Taal Volcanoes, Southern Luzon, Philippines , 2004 .

[44]  Neng Jiang,et al.  A MAGNETITE-APATITE DEPOSIT IN THE FANSHAN ALKALINE ULTRAMAFIC COMPLEX, NORTHERN CHINA , 2004 .

[45]  L. Francalanci,et al.  Evolution and Genesis of Magmas from Vico Volcano, Central Italy: Multiple Differentiation Pathways and Variable Parental Magmas , 2004 .

[46]  B. Windley,et al.  Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt , 2003 .

[47]  Chunfu Cheng,et al.  The Fanshan Apatite‐Magnetite Deposit in the Potassic Ultramafic Layered Intrusion, North China , 2003 .

[48]  R. Rudnick,et al.  3.01 – Composition of the Continental Crust , 2003 .

[49]  S. Ji Early Mesozoic dike swarms of carbonatites and lamprophyres in Datong area , 2003 .

[50]  A. M. Abdel-Rahman Mesozoic volcanism in the Middle East: geochemical, isotopic and petrogenetic evolution of extension-related alkali basalts from central Lebanon , 2002, Geological Magazine.

[51]  L. Civetta,et al.  Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr–Nd–Pb isotope data from Roman Province and Southern Tuscany , 2002 .

[52]  Eugene I. Smith,et al.  A mantle melting profile across the Basin and Range, SW USA , 2002 .

[53]  Peter A. Cawood,et al.  High-pressure granulites (retrograded eclogites) from the Hengshan Complex, North China Craton: petr , 2001 .

[54]  Yigang Xu,et al.  Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-korean craton in china: evidence, timing and mechanism , 2001 .

[55]  D. Demaiffe,et al.  Petrological and geochemical (trace elements and Sr–Nd isotopes) characteristics of the Paleozoic Kovdor ultramafic, alkaline and carbonatite intrusion (Kola Peninsula, NW Russia) , 2000 .

[56]  S. Foley,et al.  Phase relations and fractionation sequences in potassic magma series modelled in the system CaMgSi2O6-KAlSiO4-Mg2SiO4-SiO2-F2O−1 at 1 bar to 18 kbar , 2000 .

[57]  R. Schuster,et al.  Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis , 1999 .

[58]  C. Lo,et al.  Crust–mantle interaction induced by deep subduction of the continental crust: geochemical and Sr–Nd isotopic evidence from post-collisional mafic–ultramafic intrusions of the northern Dabie complex, central China , 1999 .

[59]  S. Sokolov,et al.  Mineralogy of Crystallized Melt Inclusions from Gardiner and Kovdor Ultramafic Alkaline Complexes: Implications for Carbonatite Genesis , 1998 .

[60]  D. Dingwell,et al.  Melt viscosities in the system Na-Fe-Si-O-F-Cl: Contrasting effects of F and Cl in alkaline melts , 1998 .

[61]  G. Jenner,et al.  Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada , 1998 .

[62]  A. P. Roex,et al.  Isotope and Trace Element Geochemistry of Cretaceous Damaraland Lamprophyres and Carbonatites, Northwestern Namibia: Evidence for Plume—Lithosphere Interactions , 1998 .

[63]  M. Ghiorso,et al.  Calculation of peridotite partial melting from thermodynamic models of minerals and melts I. Review of methods and comparison with experiments , 1998 .

[64]  K. Condie Sources of Proterozoic mafic dyke swarms: constraints from ThTa and LaYb ratios , 1997 .

[65]  W. Griffin,et al.  QUANTITATIVE ANALYSIS OF TRACE ELEMENTS IN GEOLOGICAL MATERIALS BY LASER ABLATION ICPMS: INSTRUMENTAL OPERATING CONDITIONS AND CALIBRATION VALUES OF NIST GLASSES , 1996 .

[66]  D. Snyder,et al.  Replenishment of magma chambers: comparison of fluid-mechanic experiments with field relations , 1995 .

[67]  D. Baker,et al.  The low viscosities of F + H2O-bearing granitic melts and implications for melt extraction and transport , 1995 .

[68]  Mark S. Ghiorso,et al.  Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures , 1995 .

[69]  A. McBirney,et al.  The Cumulate Paradigm Reconsidered , 1995, The Journal of Geology.

[70]  S. Menchetti,et al.  Crystal-chemistry of clinopyroxenes from potassic and ultrapotassic rocks in central Italy: implications on their genesis , 1994 .

[71]  W. McDonough,et al.  Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics , 1993 .

[72]  S. Foley An experimental study of olivine lamproite: First results from the diamond stability field , 1993 .

[73]  S. Foley Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas , 1992 .

[74]  P. Wyllie,et al.  High-pressure apatite solubility in carbonate-rich liquids: Implications for mantle metasomatism , 1992 .

[75]  A. Nutman,et al.  Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton , 1992 .

[76]  T. Vennemann,et al.  The rate and temperature of reaction of CIF3 with silicate minerals, and their relevance to oxygen isotope analysis , 1990 .

[77]  J. Turner,et al.  Fountains in Magma Chambers , 1989 .

[78]  M. Conrad,et al.  Modally-Graded Rhythmic Layering in the Skaergaard Intrusion , 1989 .

[79]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[80]  D. Green,et al.  The ultrapotassic rocks: Characteristics, classification, and constraints for petrogenetic models , 1987 .

[81]  T. Irvine Layering and Related Structures in the Duke Island and Skaergaard Intrusions: Similarities, Differences, and Origins , 1987 .

[82]  Paul Henderson,et al.  Rare earth element geochemistry , 1984 .

[83]  D. James The Combined Use of Oxygen and Radiogenic Isotopes as Indicators of Crustal Contamination , 1981 .

[84]  G. Wasserburg,et al.  Sm-Nd isotopic evolution of chondrites , 1980 .

[85]  D. Eggler,et al.  The origins of potassic magmas; 1, Melting relations in the systems KAlSiO 4 -Mg 2 SiO 4 -SiO 2 and KAlSiO 4 MgO-SiO 2 -CO 2 to 30 kilobars , 1980 .

[86]  A. Notholt The economic geology and development of igneous phosphate deposits in Europe and the USSR , 1979 .

[87]  K. Marti,et al.  Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle , 1978 .

[88]  R. Steiger,et al.  Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology , 1977 .

[89]  G. M. Brown,et al.  Layered Igneous Rocks , 1967 .

[90]  R. Howie,et al.  An Introduction to the Rock-Forming Minerals , 1966 .

[91]  P. Hans,et al.  Stability of biotite: experiment, theory, and application , 1965 .