Removal lemmas and approximate homomorphisms

We study quantitative relationships between the triangle removal lemma and several of its variants. One such variant, which we call the triangle-free lemma, states that for each $\epsilon>0$ there exists M such that every triangle-free graph G has an $\epsilon$ -approximate homomorphism to a triangle-free graph F on at most M vertices (here an $\epsilon$ -approximate homomorphism is a map $V(G) \to V(F)$ where all but at most $\epsilon \left\lvert{V(G)}\right\rvert^2$ edges of G are mapped to edges of F). One consequence of our results is that the least possible M in the triangle-free lemma grows faster than exponential in any polynomial in $\epsilon^{-1}$ . We also prove more general results for arbitrary graphs, as well as arithmetic analogues over finite fields, where the bounds are close to optimal.

[1]  Jordan S. Ellenberg,et al.  On large subsets of $F_q^n$ with no three-term arithmetic progression , 2016 .

[2]  Yoshiharu Kohayakawa,et al.  Estimating parameters associated with monotone properties , 2017, Combinatorics, Probability and Computing.

[3]  Jacob Fox,et al.  A new proof of the graph removal lemma , 2010, ArXiv.

[4]  Vojtech Rödl,et al.  Generalizations of the removal lemma , 2009, Comb..

[5]  Adi Shraibman,et al.  Larger Corner-Free Sets from Better NOF Exactly-\(N\) Protocols , 2021 .

[6]  F. Behrend On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1946, Proceedings of the National Academy of Sciences of the United States of America.

[7]  László Lovász,et al.  A tight bound for Green's arithmetic triangle removal lemma in vector spaces , 2017 .

[8]  D. Král,et al.  A removal lemma for systems of linear equations over finite fields , 2008, 0809.1846.

[9]  Robert D. Kleinberg,et al.  The growth rate of tri-colored sum-free sets , 2016, Discrete Analysis.

[10]  A. Shapira A proof of Green's conjecture regarding the removal properties of sets of linear equations , 2008, 0807.4901.

[11]  David Conlon,et al.  A relative Szemerédi theorem , 2013, 1305.5440.

[12]  Alan M. Frieze,et al.  Quick Approximation to Matrices and Applications , 1999, Comb..

[13]  J. Solymosi Note on a Generalization of Roth’s Theorem , 2003 .

[14]  Luke Pebody,et al.  Proof of a Conjecture of Kleinberg-Sawin-Speyer , 2016 .

[15]  Terence Tao A variant of the hypergraph removal lemma , 2006, J. Comb. Theory, Ser. A.

[16]  Daniel Král,et al.  A combinatorial proof of the Removal Lemma for Groups , 2008, J. Comb. Theory, Ser. A.

[17]  Vsevolod F. Lev,et al.  Progression-free sets in $\mathbb Z_4^n$ are exponentially small , 2017 .

[18]  Ben Green Lower bounds for corner-free sets , 2021 .

[19]  Jacob Fox,et al.  A polynomial bound for the arithmetic k-cycle removal lemma in vector spaces , 2018, J. Comb. Theory, Ser. A.

[20]  J. Fox,et al.  Popular Progression Differences in Vector Spaces , 2017, International Mathematics Research Notices.

[21]  Sergey Norin,et al.  A DISTRIBUTION ON TRIPLES WITH MAXIMUM ENTROPY MARGINAL , 2016, Forum of Mathematics, Sigma.

[22]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[23]  Ernie Croot,et al.  Progression-free sets in Z_4^n are exponentially small , 2016, 1605.01506.

[24]  B. Green A Szemerédi-type regularity lemma in abelian groups, with applications , 2003, math/0310476.

[25]  W. T. Gowers,et al.  Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.

[26]  Terence Tao,et al.  The Gaussian primes contain arbitrarily shaped constellations , 2005 .

[27]  Noga Alon Testing subgraphs in large graphs , 2002, Random Struct. Algorithms.

[28]  Jaroslav Nesetril,et al.  The core of a graph , 1992, Discret. Math..

[29]  Lisa Sauermann,et al.  A lower bound for the k‐multicolored sum‐free problem in Zmn , 2018, Proceedings of the London Mathematical Society.

[30]  Luke Peabody Proof of a conjecture of Kleinberg-Sawin-Speyer , 2018, Discrete Analysis.

[31]  Joshua A. Grochow,et al.  On cap sets and the group-theoretic approach to matrix multiplication , 2016, ArXiv.