Tuning the instrument: sonic properties in the spider's web

Spider orb webs are multifunctional, acting to absorb prey impact energy and transmit vibratory information to the spider. This paper explores the links between silk material properties, propagation of vibrations within webs and the ability of the spider to control and balance web function. Combining experimental and modelling approaches, we contrast transverse and longitudinal wave propagation in the web. It emerged that both transverse and longitudinal wave amplitude in the web can be adjusted through changes in web tension and dragline silk stiffness, i.e. properties that can be controlled by the spider. In particular, we propose that dragline silk supercontraction may have evolved as a control mechanism for these multifunctional fibres. The various degrees of active influence on web engineering reveals the extraordinary ability of spiders to shape the physical properties of their self-made materials and architectures to affect biological functionality, balancing trade-offs between structural and sensory functions.

[1]  R. Jackson,et al.  Signals and Signal Choices made by the Araneophagic Jumping Spider Portia fimbriata while Hunting the Orb‐Weaving Web spiders Zygiella x‐notata and Zosis geniculatus , 2000 .

[2]  W. Mitch Masters,et al.  Vibrations in the orbwebs of Nuctenea sclopetaria (Araneidae) , 1984, Behavioral Ecology and Sociobiology.

[3]  D. Porter,et al.  Proline and processing of spider silks. , 2008, Biomacromolecules.

[4]  T. Blackledge,et al.  Evolution of supercontraction in spider silk: structure–function relationship from tarantulas to orb-weavers , 2010, Journal of Experimental Biology.

[5]  Fritz Vollrath,et al.  Thermally induced changes in dynamic mechanical properties of native silks. , 2013, Biomacromolecules.

[6]  Herbert Kolsky,et al.  Stress Waves in Solids , 2003 .

[7]  R. W. Work Viscoelastic Behaviour and Wet Supercontraction of Major Ampullate Silk Fibres of Certain Orb-Web-Building Spiders (Araneae) , 1985 .

[8]  R. Suter Cyclosa turbinata (Araneae, Araneidae): Prey discrimination via web-borne vibrations , 1978, Behavioral Ecology and Sociobiology.

[9]  Markus J. Buehler,et al.  Nonlinear material behaviour of spider silk yields robust webs , 2012, Nature.

[10]  F. Ko,et al.  Modeling of mechanical properties and structural design of spider web. , 2004, Biomacromolecules.

[11]  Fritz Vollrath,et al.  Spider Silk: Super Material or Thin Fibre? , 2013, Advanced materials.

[12]  R. W. Work A Comparative Study of the Supercontraction of Major Ampullate Silk Fibers of Orb-Web-Building Spiders (Araneae) , 1981 .

[13]  G. Plaza,et al.  Self-tightening of spider silk fibers induced by moisture , 2003 .

[14]  C. Craig,et al.  The ecological and evolutionary interdependence between web architecture and web silk spun by orb web weaving spiders , 1987 .

[15]  R. Foelix,et al.  The biology of spiders. , 1987 .

[16]  A. Tarakanova,et al.  The role of capture spiral silk properties in the diversification of orb webs , 2012, Journal of The Royal Society Interface.

[17]  Takeshi Watanabe,et al.  Web tuning of an orb-web spider, Octonoba sybotides, regulates prey-catching behaviour , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[18]  Z. Shao,et al.  Elasticity of spider silks. , 2008, Biomacromolecules.

[19]  J. Gosline,et al.  The mechanical design of spider silks: from fibroin sequence to mechanical function. , 1999, The Journal of experimental biology.

[20]  F. Barth,et al.  Spider vibration receptors: Threshold curves of individual slits in the metatarsal lyriform organ , 1982, Journal of comparative physiology.

[21]  R. Daza,et al.  Minor ampullate silks from Nephila and Argiope spiders: tensile properties and microstructural characterization. , 2012, Biomacromolecules.

[22]  Ko Okumura,et al.  Simple model for the mechanics of spider webs. , 2010, Physical review letters.

[23]  F. G. Barth,et al.  Vibrations in the orb web of the spider Nephila clavipes: cues for discrimination and orientation , 1996, Journal of Comparative Physiology A.

[24]  Mark W. Denny,et al.  THE PHYSICAL PROPERTIES OF SPIDER'S SILK AND THEIR ROLE IN THE DESIGN OF ORB-WEBS , 1976 .

[25]  G. V. Guinea,et al.  Stretching of supercontracted fibers: a link between spinning and the variability of spider silk , 2005, Journal of Experimental Biology.

[26]  D. Porter,et al.  Two mechanisms for supercontraction in Nephila spider dragline silk. , 2011, Biomacromolecules.

[27]  Fritz Vollrath,et al.  Consequences of electrical conductivity in an orb spider's capture web , 2013, Naturwissenschaften.

[28]  C. Siviour,et al.  Ballistic impact to access the high-rate behaviour of individual silk fibres , 2012 .

[29]  J. Gosline,et al.  Supercontraction stress in spider webs. , 2004, Biomacromolecules.

[30]  Ingi Agnarsson,et al.  How super is supercontraction? Persistent versus cyclic responses to humidity in spider dragline silk , 2009, Journal of Experimental Biology.

[31]  Iain G. Main,et al.  Vibrations and Waves in Physics , 1985 .

[32]  F Vollrath,et al.  The effect of spinning conditions on the mechanics of a spider's dragline silk , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[33]  Jessica Siltberg-Liberles,et al.  Piriform spider silk sequences reveal unique repetitive elements. , 2010, Biomacromolecules.

[34]  J. Zemlin A STUDY OF THE MECHANICAL BEHAVIOR OF SPIDER SILKS , 1968 .

[35]  T. Blackledge,et al.  Wet webs work better: humidity, supercontraction and the performance of spider orb webs , 2013, Journal of Experimental Biology.

[36]  Friedrich G. Barth,et al.  Forces in the spider orb web , 1992, Journal of Comparative Physiology A.

[37]  Todd A Blackledge,et al.  Biomechanical variation of silk links spinning plasticity to spider web function. , 2009, Zoology.

[38]  W. M. Masters,et al.  Vibrations in the orbwebs of Nuctenea sclopetaria (Araneidae) , 1984, Behavioral Ecology and Sociobiology.

[39]  T. Bilde,et al.  Vibratory courtship in a web-building spider: signalling quality or stimulating the female? , 2003, Animal Behaviour.

[40]  Thomas Hesselberg,et al.  The mechanical properties of the non-sticky spiral in Nephila orb webs (Araneae, Nephilidae) , 2012, Journal of Experimental Biology.

[41]  Sean P Kelly,et al.  Spider orb webs rely on radial threads to absorb prey kinetic energy , 2012, Journal of The Royal Society Interface.

[42]  Chris Holland,et al.  The Speed of Sound in Silk: Linking Material Performance to Biological Function , 2014, Advanced materials.

[43]  W. Eberhard The rare large prey hypothesis for orb web evolution: a critique , 2013 .

[44]  F. Vollrath Vibrations: Their Signal Function for a Spider Kleptoparasite , 1979, Science.

[45]  Z. Shao,et al.  Extended wet-spinning can modify spider silk properties. , 2005, Chemical communications.

[46]  H. Markl,et al.  Vibration signal transmission in spider orb webs. , 1981, Science.

[47]  D. Porter,et al.  Silks cope with stress by tuning their mechanical properties under load , 2012 .

[48]  M. S. Alam,et al.  Damage Tolerance in Naturally Compliant Structures , 2005 .

[49]  Ramón Zaera,et al.  Uncovering changes in spider orb-web topology owing to aerodynamic effects , 2014, Journal of The Royal Society Interface.

[50]  Robert W. Work,et al.  Dimensions, Birefringences, and Force-Elongation Behavior of Major and Minor Ampullate Silk Fibers from Orb-Web-Spinning Spiders—The Effects of Wetting on these Properties , 1977 .

[51]  M. S. Alam,et al.  Mechanics in naturally compliant structures , 2007 .

[52]  Fritz Vollrath,et al.  Structural engineering of an orb-spider's web , 1995, Nature.

[53]  Fritz Vollrath,et al.  Modulation of the mechanical properties of spider silk by coating with water , 1989, Nature.