Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma

[1]  D. Lamb,et al.  Proton imaging of stochastic magnetic fields , 2017, Journal of Plasma Physics.

[2]  D. Lamb,et al.  Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo , 2017, 1702.03015.

[3]  D. Lamb,et al.  Inferring morphology and strength of magnetic fields from proton radiographs. , 2016, The Review of scientific instruments.

[4]  Klaus Weide,et al.  FLASH MHD simulations of experiments that study shock-generated magnetic fields , 2015 .

[5]  F. Miniati,et al.  The generation and amplification of intergalactic magnetic fields in analogue laboratory experiments with high power lasers , 2015 .

[6]  Francesco Miniati,et al.  Self-similar energetics in large clusters of galaxies , 2015, Nature.

[7]  Robert Crowston,et al.  Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas , 2015, Proceedings of the National Academy of Sciences.

[8]  Petros Tzeferacos,et al.  Collisionless shock experiments with lasers and observation of Weibel instabilities , 2015 .

[9]  C. Ott,et al.  Implicit large eddy simulations of anisotropic weakly compressible turbulence with application to core-collapse supernovae , 2015, 1501.03169.

[10]  C. Federrath,et al.  THE TURBULENT DYNAMO IN HIGHLY COMPRESSIBLE SUPERSONIC PLASMAS , 2014, 1411.4707.

[11]  Klaus Weide,et al.  THE BIERMANN CATASTROPHE IN NUMERICAL MAGNETOHYDRODYNAMICS , 2014, 1408.4161.

[12]  Anthony Scopatz,et al.  Turbulent amplification of magnetic fields in laboratory laser-produced shock waves , 2014, Nature Physics.

[13]  S. Allen,et al.  THE RELATION BETWEEN GAS DENSITY AND VELOCITY POWER SPECTRA IN GALAXY CLUSTERS: QUALITATIVE TREATMENT AND COSMOLOGICAL SIMULATIONS , 2014, 1404.5306.

[14]  D. Nagai,et al.  The relation between gas density and velocity power spectra in galaxy clusters: High-resolution hydrodynamic simulations and the role of conduction , 2014, 1404.5302.

[15]  D. Ryutov,et al.  Collisional effects in the ion Weibel instability for two counter-propagating plasma streams , 2014 .

[16]  B. Reville,et al.  SCALING OF MAGNETO-QUANTUM-RADIATIVE HYDRODYNAMIC EQUATIONS: FROM LASER-PRODUCED PLASMAS TO ASTROPHYSICS , 2014, 1401.7880.

[17]  F. Krause,et al.  The Inverse Scattering Transformation and the Theory of Solitons. By W. ECKHAUS and A. VAN HARTEN. North-Holland, 1981. 222pp. $31.75. , 1982, Journal of Fluid Mechanics.

[18]  R. P. Drake,et al.  Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows , 2013, Nature Physics.

[19]  A. Lazarian,et al.  Astrophysical Hydromagnetic Turbulence , 2013, 1307.5496.

[20]  Dongwook Lee,et al.  A solution accurate, efficient and stable unsplit staggered mesh scheme for three dimensional magnetohydrodynamics , 2013, J. Comput. Phys..

[21]  Klaus Weide,et al.  Modeling HEDLA magnetic field generation experiments on laser facilities , 2013 .

[22]  Y. Zakharov Comment on “Studying astrophysical collisionless shocks with counterstreaming plasmas from high power lasers” , 2012 .

[23]  R. P. Drake,et al.  Self-organized electromagnetic field structures in laser-produced counter-streaming plasmas , 2012, Nature Physics.

[24]  Moscow,et al.  A Mexican hat with holes: calculating low-resolution power spectra from data with gaps , 2012, 1207.5825.

[25]  J. Frenje,et al.  Source characterization and modeling development for monoenergetic-proton radiography experiments on OMEGA. , 2012, The Review of scientific instruments.

[26]  R. P. Drake,et al.  DESIGN CONSIDERATIONS FOR UNMAGNETIZED COLLISIONLESS-SHOCK MEASUREMENTS IN HOMOLOGOUS FLOWS , 2012 .

[27]  D. Sokoloff,et al.  Current Status of Turbulent Dynamo Theory , 2012, 1203.6195.

[28]  R. P. Drake,et al.  Studying astrophysical collisionless shocks with counterstreaming plasmas from high power lasers , 2012 .

[29]  R. P. Drake,et al.  Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves , 2012, Nature.

[30]  D. Ryutov,et al.  Invited article: Relation between electric and magnetic field structures and their proton-beam images. , 2012, The Review of scientific instruments.

[31]  Wojciech Rozmus,et al.  Characterizing counter-streaming interpenetrating plasmas relevant to astrophysical collisionless shocks , 2011 .

[32]  H. Boehringer,et al.  X-ray surface brightness and gas density fluctuations in the Coma cluster , 2011, 1110.5875.

[33]  A. Beresnyak Universal nonlinear small-scale dynamo. , 2011, Physical review letters.

[34]  Hamburg,et al.  Mach number dependence of turbulent magnetic field amplification: solenoidal versus compressive flows. , 2011, Physical review letters.

[35]  J. F. Williams,et al.  An efficient approach for the numerical solution of the Monge-Ampère equation , 2011 .

[36]  R. Klessen,et al.  THE GENERATION OF STRONG MAGNETIC FIELDS DURING THE FORMATION OF THE FIRST STARS , 2010, 1008.3481.

[37]  D. Lamb,et al.  Inertial range Eulerian and Lagrangian statistics from numerical simulations of isotropic turbulence , 2010, Journal of Fluid Mechanics.

[38]  Andrew Siegel,et al.  Extensible component-based architecture for FLASH, a massively parallel, multiphysics simulation code , 2009, Parallel Comput..

[39]  D. Ryu,et al.  Turbulence and Magnetic Fields in the Large-Scale Structure of the Universe , 2008, Science.

[40]  D. Lamb,et al.  Intermittency and universality in fully developed inviscid and weakly compressible turbulent flows. , 2007, Physical review letters.

[41]  J. McWilliams,et al.  Fluctuation dynamo and turbulent induction at low magnetic Prandtl numbers , 2007, 0704.2002.

[42]  J. Pinton,et al.  Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium. , 2007, Physical review letters.

[43]  J. R. Rygg,et al.  Measuring E and B fields in laser-produced plasmas with monoenergetic proton radiography. , 2006, Physical review letters.

[44]  A. Schekochihin,et al.  Turbulence, magnetic fields, and plasma physics in clusters of galaxies , 2006, astro-ph/0601246.

[45]  K. Subramanian,et al.  Evolving turbulence and magnetic fields in galaxy clusters , 2005, astro-ph/0505144.

[46]  Imperial College London,et al.  Simulations of the Small-Scale Turbulent Dynamo , 2003, astro-ph/0312046.

[47]  R. Sunyaev,et al.  Turbulence in clusters of galaxies and X-ray line profiles , 2003, astro-ph/0310737.

[48]  N. Haugen,et al.  Simulations of nonhelical hydromagnetic turbulence. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  T. Ensslin,et al.  The magnetic power spectrum in Faraday rotation screens , 2003, astro-ph/0302426.

[50]  C. Carilli,et al.  Cluster Magnetic Fields , 2001, astro-ph/0110655.

[51]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[52]  M. Christen,et al.  Magnetic field saturation in the Riga dynamo experiment. , 2000, Physical review letters.

[53]  Gerbeth,et al.  Detection of a flow induced magnetic field eigenmode in the riga dynamo facility , 1999, Physical review letters.

[54]  S. Segre,et al.  A review of plasma polarimetry—theory and methods , 1999 .

[55]  K. Hurley,et al.  An X-ray pulsar with a superstrong magnetic field in the soft γ-ray repeater SGR1806 − 20 , 1998, Nature.

[56]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[57]  R. Cen,et al.  The Protogalactic Origin for Cosmic Magnetic Fields , 1996, astro-ph/9607141.

[58]  N. Kleeorin,et al.  Magnetohydrodynamic turbulence in the solar convective zone as a source of oscillations and sunspots formation. , 1996 .

[59]  Kleeorin,et al.  Effective Ampère force in developed magnetohydrodynamic turbulence. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[60]  A. Ruzmaikin,et al.  Spectrum of the galactic magnetic fields , 1982 .

[61]  U. Frisch,et al.  Helical and Nonhelical Turbulent Dynamos , 1981 .

[62]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[63]  A. P. Kazantsev Enhancement of a magnetic field by a conducting fluid , 1968 .

[64]  W. B. Thompson Transport Processes in the Plasma , 1960 .

[65]  E. Parker Hydromagnetic Dynamo Models , 1955 .

[66]  L. Biermann,et al.  Cosmic Radiation and Cosmic Magnetic Fields. II. Origin of Cosmic Magnetic Fields , 1951 .

[67]  G. Batchelor On the spontaneous magnetic field in a conducting liquid in turbulent motion , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[68]  Brad Gallagher,et al.  Terascale turbulence computation using the FLASH3 application framework on the IBM Blue Gene/L system , 2008, IBM J. Res. Dev..

[69]  S. Owley,et al.  Simulations of the Small-scale Turbulent Dynamo , 2008 .

[70]  C. Heiles,et al.  Magnetic fields in galaxies and beyond , 1997, Nature.

[71]  Samuel A. Letzring,et al.  Initial performance results of the OMEGA laser system , 1997 .

[72]  R. Kulsrud Important plasma problems in astrophysics , 1995 .

[73]  Yu. B. Ponomarenko,et al.  Theory of the hydromagnetic generator , 1973 .

[74]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[75]  K. Papadopoulos,et al.  SPONTANEOUS MAGNETIC FIELDS IN LASER-PRODUCED PLASMAS. , 1971 .

[76]  D. Evans,et al.  Laser light scattering in laboratory plasmas , 1969 .

[77]  B. Trubnikov Particle Interactions in a Fully Ionized Plasma , 1965 .