On spherical harmonics based numerical quadrature over the surface of a sphere

Large-scale simulations in spherical geometries require associated quadrature formulas. Classical approaches based on tabulated weights are limited to specific quasi-uniform distributions of relatively low numbers of nodes. By using a radial basis function-generated finite differences (RBF-FD)-based approach, the proposed algorithm creates quadrature weights for N arbitrarily scattered nodes in only O(NlogN) operations.

[1]  Ian H. Sloan,et al.  Extremal Systems of Points and Numerical Integration on the Sphere , 2004, Adv. Comput. Math..

[2]  Joseph D. Ward,et al.  Localized Bases for Kernel Spaces on the Unit Sphere , 2012, SIAM J. Numer. Anal..

[3]  Bengt Fornberg,et al.  On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere , 2008, J. Comput. Phys..

[4]  Gregory Beylkin,et al.  Rotationally invariant quadratures for the sphere , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  Natasha Flyer,et al.  A radial basis function method for the shallow water equations on a sphere , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  P. Bazant,et al.  Efficient Numerical Integration on the Surface of a Sphere , 1986 .

[7]  Edward B. Saff,et al.  Low Complexity Methods For Discretizing Manifolds Via Riesz Energy Minimization , 2013, Found. Comput. Math..

[8]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[9]  Robert J. Renka,et al.  Multivariate interpolation of large sets of scattered data , 1988, TOMS.

[10]  Bengt Fornberg,et al.  A primer on radial basis functions with applications to the geosciences , 2015, CBMS-NSF regional conference series in applied mathematics.

[11]  Alvise Sommariva,et al.  Approximation on the sphere using radial basis functions plus polynomials , 2008, Adv. Comput. Math..

[12]  Ian H. Sloan,et al.  How good can polynomial interpolation on the sphere be? , 2001, Adv. Comput. Math..

[13]  Philip C. Curtis $n$-parameter families and best approximation. , 1959 .

[14]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[15]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[16]  J. C. Mairhuber ON HAAR'S THEOREM CONCERNING CHEBYCHEV APPROXIMATION PROBLEMS HAVING UNIQUE SOLUTIONS' , 1956 .

[17]  Robert J. Renka,et al.  Algorithm 772: STRIPACK: Delaunay triangulation and Voronoi diagram on the surface of a sphere , 1997, TOMS.

[18]  Jon Louis Bentley,et al.  An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.

[19]  Bengt Fornberg,et al.  Solving PDEs with radial basis functions * , 2015, Acta Numerica.

[20]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[21]  Bengt Fornberg,et al.  On spherical harmonics based numerical quadrature over the surface of a sphere , 2014, Advances in Computational Mathematics.

[22]  B. Fornberg,et al.  Radial Basis Function-Generated Finite Differences: A Mesh-Free Method for Computational Geosciences , 2015 .

[23]  Joseph D. Ward,et al.  Kernel based quadrature on spheres and other homogeneous spaces , 2012, Numerische Mathematik.

[24]  A. D. McLaren,et al.  Optimal numerical integration on a sphere , 1963 .

[25]  Bengt Fornberg,et al.  Fast generation of 2-D node distributions for mesh-free PDE discretizations , 2015, Comput. Math. Appl..

[26]  Erik Lehto,et al.  A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere , 2012, J. Comput. Phys..

[27]  Bengt Fornberg,et al.  On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy , 2016, J. Comput. Phys..

[28]  Alvise Sommariva,et al.  Meshless cubature by Green's formula , 2006, Appl. Math. Comput..

[29]  John P. Snyder,et al.  Map Projections: A Working Manual , 2012 .

[30]  B. Fornberg,et al.  Radial basis functions: Developments and applications to planetary scale flows , 2011 .

[31]  E. Saff,et al.  Discretizing Manifolds via Minimum Energy Points , 2004 .

[32]  Alvise Sommariva,et al.  INTEGRATION BY RBF OVER THE SPHERE , 2005 .