A basis for the full Homfly skein of the annulus

A basis, denoted $\{Q_{\lambda,\mu\}$, for the full Homfly skein of the annulus $\mathcal{C}$ has been introduced by the authors, where $\lambda$ and $\mu$ are partitions of integers $n$ and $p$ into $k$ and $k^*$ parts respectively. The basis consists of eigenvectors of the two meridian maps on $\mathcal{C}$; these maps are the linear endomorphisms of $\mathcal{C}$ induced by the insertion of a meridian loop with either orientation around a diagram in the annulus. Here we present an explicit expression for each $Q_{\lambda,\mu}$ as the determinant of a $(k^*+k)\times(k^*+k)$ matrix whose entries are simple elements $h_n, h_n^*$ in the skein $\mathcal{C}$. In the case $p=0$ ($\mu=\phi$) the determinant gives the Jacobi–Trudy formula for the Schur function $s_{\lambda}$ of $N$ variables as a polynomial in the complete symmetric functions $h_n$ of the variables. The Jacobi–Trudy determinants have previously been used by Kawagoe and Lukac in discussing the elements in the skein of the annulus represented by closed braids in which all strings are oriented in the same direction. Our results and techniques form a natural extension of the work of Lukac.

[1]  H. Morton Integrality of Homfly 1–tangle invariants , 2006, math/0606336.

[2]  Sascha G. Lukac Idempotents of the Hecke algebra become Schur functions in the skein of the annulus , 2001, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  H. Morton,et al.  Homfly polynomials of generalized Hopf links , 2001, math/0106207.

[4]  H. Morton SKEIN THEORY AND THE MURPHY OPERATORS , 2001, math/0102098.

[5]  S. Lukáč Homfly skeins and the Hopf link , 2000 .

[6]  K. Kawagoe On the skeins in the annulus and applications to invariants of 3-manifolds , 1998 .

[7]  H. Morton,et al.  IDEMPOTENTS OF HECKE ALGEBRAS OF TYPE A , 1997, q-alg/9702017.

[8]  H. Morton,et al.  Young diagrams, the Homfly skein of the annulus and unitary invariants , 1997 .

[9]  Hugh R. Morton,et al.  ALGORITHMS FOR POSITIVE BRAIDS , 1994 .

[10]  J. Murakami,et al.  Centralizer algebras of the mixed tensor representations of quantum group Uq(gl(n, C)) , 1993 .

[11]  H. Morton Invariants of Links and 3-Manifolds From Skein Theory and From Quantum Groups , 1993 .

[12]  V. Turaev Conway and Kauffman modules of a solid torus , 1990 .

[13]  H. Wenzl Representations of braid groups and the quantum Yang-Baxter equation , 1990 .

[14]  A. Rodés,et al.  Contribuciones matemáticas en homenaje al profesor D. Antonio Plans Sanz de Bremond , 1990 .

[15]  Hugh R. Morton,et al.  Knots and algebras , 1990 .

[16]  K. Koike On the decomposition of tensor products of the representations of the classical groups: By means of the universal characters , 1989 .

[17]  J. Murakami The parallel version of polynomial invariants of links , 1989 .

[18]  John R. Stembridge,et al.  Rational tableaux and the tensor algebra of gln , 1987, J. Comb. Theory, Ser. A.

[19]  A. Gyoja A $q$-analogue of Young symmetrizer , 1986 .

[20]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[21]  R. King Generalized Young Tableaux and the General Linear Group , 1970 .