A basis for the full Homfly skein of the annulus
暂无分享,去创建一个
[1] H. Morton. Integrality of Homfly 1–tangle invariants , 2006, math/0606336.
[2] Sascha G. Lukac. Idempotents of the Hecke algebra become Schur functions in the skein of the annulus , 2001, Mathematical Proceedings of the Cambridge Philosophical Society.
[3] H. Morton,et al. Homfly polynomials of generalized Hopf links , 2001, math/0106207.
[4] H. Morton. SKEIN THEORY AND THE MURPHY OPERATORS , 2001, math/0102098.
[5] S. Lukáč. Homfly skeins and the Hopf link , 2000 .
[6] K. Kawagoe. On the skeins in the annulus and applications to invariants of 3-manifolds , 1998 .
[7] H. Morton,et al. IDEMPOTENTS OF HECKE ALGEBRAS OF TYPE A , 1997, q-alg/9702017.
[8] H. Morton,et al. Young diagrams, the Homfly skein of the annulus and unitary invariants , 1997 .
[9] Hugh R. Morton,et al. ALGORITHMS FOR POSITIVE BRAIDS , 1994 .
[10] J. Murakami,et al. Centralizer algebras of the mixed tensor representations of quantum group Uq(gl(n, C)) , 1993 .
[11] H. Morton. Invariants of Links and 3-Manifolds From Skein Theory and From Quantum Groups , 1993 .
[12] V. Turaev. Conway and Kauffman modules of a solid torus , 1990 .
[13] H. Wenzl. Representations of braid groups and the quantum Yang-Baxter equation , 1990 .
[14] A. Rodés,et al. Contribuciones matemáticas en homenaje al profesor D. Antonio Plans Sanz de Bremond , 1990 .
[15] Hugh R. Morton,et al. Knots and algebras , 1990 .
[16] K. Koike. On the decomposition of tensor products of the representations of the classical groups: By means of the universal characters , 1989 .
[17] J. Murakami. The parallel version of polynomial invariants of links , 1989 .
[18] John R. Stembridge,et al. Rational tableaux and the tensor algebra of gln , 1987, J. Comb. Theory, Ser. A.
[19] A. Gyoja. A $q$-analogue of Young symmetrizer , 1986 .
[20] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[21] R. King. Generalized Young Tableaux and the General Linear Group , 1970 .