Maximum Norm Analysis of Overlapping Nonmatching Grid Discretizations of Elliptic Equations

In this paper, we provide a maximum norm analysis of a finite difference scheme defined on overlapping nonmatching grids for second order elliptic equations. We consider a domain which is the union of p overlapping subdomains where each subdomain has its own independently generated grid. The grid points on the subdomain boundaries need not match the grid points from adjacent subdomains. To obtain a global finite difference discretization of the elliptic problem, we employ standard stable finite difference discretizations within each of the overlapping subdomains and the different subproblems are coupled by enforcing continuity of the solutions across the boundary of each subdomain, by interpolating the discrete solution on adjacent subdomains. If the subdomain finite difference schemes satisfy a strong discrete maximum principle and if the overlap is sufficiently large, we show that the global discretization converges in optimal order corresponding to the largest truncation errors of the local interpolation maps and discretizations. Our discretization scheme and the corresponding theory allows any combination of lower order and higher order finite difference schemes in different subdomains. We describe also how the resulting linear system can be solved iteratively by a parallel Schwarz alternating method or a Schwarz preconditioned Krylov subspace iterative method. Several numerical results are included to support the theory.

[1]  William D. Henshaw,et al.  Automatic grid generation , 1996, Acta Numerica.

[2]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[3]  G. Golub,et al.  Gmres: a Generalized Minimum Residual Algorithm for Solving , 2022 .

[4]  C. Zheng,et al.  ; 0 ; , 1951 .

[5]  G. Starius,et al.  Composite mesh difference methods for elliptic boundary value problems , 1977 .

[6]  Olof B. Widlund,et al.  Iterative Substructuring Preconditioners For Mortar Element Methods In Two Dimensions , 1997 .

[7]  V. Arnold,et al.  Ordinary Differential Equations , 1973 .

[8]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[9]  Anthony T. Patera,et al.  Nonconforming mortar element methods: Application to spectral discretizations , 1988 .

[10]  YU. A. KUZNETSOV,et al.  Efficient iterative solvers for elliptic finite element problems on nonmatching grids , 1995 .

[11]  An Overlapping Nonmatching Grids method: Some preliminary studies , 1998 .

[12]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[13]  David E Keyes,et al.  Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations , 1992 .

[14]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[15]  W. Henshaw,et al.  Composite overlapping meshes for the solution of partial differential equations , 1990 .

[16]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[17]  T. Mathew,et al.  Uniform convergence of the Schwarz alternating method for solving singularly perturbed advection-di% , 1998 .

[18]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[19]  Marc Garbey,et al.  A Parallel Schwarz Method for a Convection-Diffusion Problem , 2000, SIAM J. Sci. Comput..

[20]  Zi-Cai Li,et al.  Schwarz Alternating Method , 1998 .

[21]  Mario A. Casarin Schwarz Preconditioners for Spectral and Mortar Finite Element Methods with Applications to Incompressible Fluids , 1996 .

[22]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[23]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[24]  J. L. Steger,et al.  On the use of composite grid schemes in computational aerodynamics , 1987 .

[25]  Maksymilian Dryja,et al.  An Additive Schwarz method for Elliptic Mortar Finite Element Problems in Three Dimensions , 1998 .

[26]  H. Schönheinz G. Strang / G. J. Fix, An Analysis of the Finite Element Method. (Series in Automatic Computation. XIV + 306 S. m. Fig. Englewood Clifs, N. J. 1973. Prentice‐Hall, Inc. , 1975 .

[27]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[28]  Xiao-Chuan Cai,et al.  Overlapping Nonmatching Grid Mortar Element Methods for Elliptic Problems , 1999 .

[29]  J. Pasciak,et al.  Convergence estimates for product iterative methods with applications to domain decomposition , 1991 .

[30]  T. Chan,et al.  Domain decomposition algorithms , 1994, Acta Numerica.

[31]  Philippe G. Ciarlet,et al.  Discrete maximum principle for finite-difference operators , 1970 .

[32]  O. Widlund,et al.  A Hierarchical Preconditioner for the Mortar Finite Element Method , 1995 .