Mixed Hodge structure and $\mathcal{N}=2$ Coulomb branch solution

The Coulomb branch of four dimensional N = 2 theories can be solved by finding a Seiberg–Witten (SW) geometry and a SW differential. While lots of SW geometries are found, the extraction of low energy theory out of it is limited due to following reasons: (a) the difficulty of distinguishing electric-magnetic and flavor charges; (b) the difficulty of determining the low energy theory at singular point, (c) the lack of SW differential. We show that the mixed Hodge structure (MHS) can be used to fully solve the low energy physics of Coulomb branch at every vacuum. The MHS can be used to solve above three problems as follows: (a) The smooth fiber of SW geometry carries a Mixed Hodge Structure structure with two weights: one weight describes electric-magnetic charge and the other for the flavor charge; (b) for the singular fiber, there are three MHS which can used to determine the IR theory. (c) the MHS at ∞ is used to find the SW differential. ar X iv :2 10 7. 11 18 0v 1 [ he pth ] 2 3 Ju l 2 02 1

[1]  Y. Wang,et al.  Codimension-two defects and Argyres-Douglas theories from outer-automorphism twist in 6D (2,0) theories , 2018, Physical Review D.

[2]  S. Yau,et al.  4d N=2 SCFT and singularity theory Part III: Rigid singularity , 2017, 1712.00464.

[3]  Steven Zucker,et al.  Variation of mixed Hodge structure. I , 1985 .

[4]  J. H. M. Steenbrink,et al.  On the mixed Hodge structure on the cohomology of the Milnor fibre , 1985 .

[5]  W. Nahm On electric-magnetic duality , 1997 .

[6]  M. Saito,et al.  Exponents and Newton polyhedra of isolated hypersurface singularities , 1988 .

[7]  On the quantum moduli space of vacua of N = 2 supersymmetric SU(Nc) gauge theories , 1995, hep-th/9505075.

[8]  C. Hertling Frobenius Manifolds and Moduli Spaces for Singularities , 2002 .

[9]  M. Saito,et al.  Gauss-Manin system and mixed Hodge structure , 1982 .

[10]  E. Shuryak Monopoles , 2021, Nonperturbative Topological Phenomena in QCD and Related Theories.

[11]  Morihiko Saito,et al.  On the structure of Brieskorn lattice , 1989 .

[12]  N. Seiberg,et al.  Electric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory , 1994 .

[13]  E. Witten,et al.  Supersymmetric Yang-Mills theory and integrable systems , 1995, hep-th/9510101.

[14]  Masaki Kashiwara,et al.  A study of variation of mixed Hodge structure , 1987 .

[15]  On short and semi-short representations for four-dimensional superconformal symmetry , 2002, hep-th/0209056.

[16]  E. Witten,et al.  Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD , 1994, hep-th/9408099.

[17]  Egbert Brieskorn,et al.  Die monodromie der isolierten singularitäten von hyperflächen , 1970 .

[18]  S. Yau,et al.  Seiberg–Witten Differential via Primitive Forms , 2018, Communications in Mathematical Physics.

[19]  A. Matsuo Summary of the Theory of Primitive Forms , 1998 .

[20]  Simple singularities and N = 2 supersymmetric Yang-Mills theory , 1994, hep-th/9411048.

[21]  B. Malgrange Intégrales asymptotiques et monodromie , 1974 .

[22]  D. Gaiotto Preprint Typeset in Jhep Style -hyper Version N = 2 Dualities , 2022 .

[23]  D. Nanopoulos,et al.  Hitchin equation, singularity, and N = 2 superconformal field theories , 2009, 0911.1990.

[24]  P. Deligne Theorie de Hodge I , 1970 .

[25]  A. Shapere,et al.  Central charges of 𝒩 = 2 superconformal field theories in four dimensions , 2008, Journal of High Energy Physics.

[26]  S. Yau,et al.  4d N=2 SCFT and singularity theory Part II: Complete intersection , 2016, 1604.07843.

[27]  INTEGRABLE SYSTEMS AND SUPERSYMMETRIC GAUGE THEORY , 1995, hep-th/9509161.

[28]  A. Klyachko,et al.  NEWTON POLYHEDRA AND AN ALGORITHM FOR COMPUTING HODGE?DELIGNE NUMBERS , 1987 .

[29]  Valentine S. Kulikov Mixed Hodge Structures and Singularities , 1998 .

[30]  C. Sabbah Hypergeometric periods for a tame polynomial. , 2006 .

[31]  S. Yau,et al.  4d N=2 SCFT from Complete Intersection Singularity , 2016, 1606.06306.

[32]  M. Martone,et al.  Construction and classification of Coulomb branch geometries , 2020, 2003.04954.

[33]  M. Waldrop Supersymmetry and supergravity. , 1983, Science.

[34]  S. Kachru,et al.  Nonperturbative results on the point particle limit of N=2 heterotic string compactifications , 1995, hep-th/9508155.

[35]  A. Dimca Sheaves in Topology , 2004 .

[36]  Mirror symmetry and exact solution of 4D $N = 2$ gauge theories: I , 1997, hep-th/9706110.

[37]  M. Saito,et al.  Mixed Hodge modules , 1990 .

[38]  J. Milnor Singular points of complex hypersurfaces , 1968 .

[39]  W. Schmid Variation of hodge structure: The singularities of the period mapping , 1973 .

[40]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[41]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[42]  Dan Xie General Argyres-Douglas theory , 2012, 1204.2270.

[43]  New Phenomena in SU(3) Supersymmetric Gauge Theory , 1995, hep-th/9505062.

[44]  Vladimir I. Arnold,et al.  Singularity Theory I , 1998 .

[45]  Sean A Broughton,et al.  Milnor numbers and the topology of polynomial hypersurfaces , 1988 .

[46]  J. H. M. Steenbrink,et al.  Mixed Hodge Structure on the Vanishing Cohomology , 1977 .

[47]  A. Shapere,et al.  Coulomb Phase of N=2 Supersymmetric QCD. , 1995, Physical review letters.