Complex wavelet regularization for solving inverse problems in remote sensing
暂无分享,去创建一个
[1] Mila Nikolova,et al. Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.
[2] Arkadi S. Nemirovsky,et al. Information-based complexity of linear operator equations , 1992, J. Complex..
[3] ANTONIN CHAMBOLLE,et al. An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.
[4] Y. Nesterov. Gradient methods for minimizing composite objective function , 2007 .
[5] Jean-François Aujol,et al. Irregular to Regular Sampling, Denoising, and Deconvolution , 2009, Multiscale Model. Simul..
[6] Mila Nikolova,et al. Efficient Minimization Methods of Mixed l2-l1 and l1-l1 Norms for Image Restoration , 2005, SIAM J. Sci. Comput..
[7] Josiane Zerubia,et al. Satellite image reconstruction from an irregular sampling , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.
[8] Laure Blanc-Féraud,et al. Reconstruction d'images satellitaires à partir d'un échantillonnage irrégulier , 2008 .
[9] Richard Baraniuk,et al. The Dual-tree Complex Wavelet Transform , 2007 .
[10] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[11] Pierre Weiss,et al. Algorithmes rapides d'optimisation convexe. Applications à la reconstruction d'images et à la détection de changements. (Fast algorithms for convex optimization. Applications to image reconstruction and change detection) , 2008 .
[12] Stanley Osher,et al. Total variation based image restoration with free local constraints , 1994, Proceedings of 1st International Conference on Image Processing.
[13] Antonin Chambolle,et al. Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage , 1998, IEEE Trans. Image Process..
[14] Michael Elad,et al. Submitted to Ieee Transactions on Image Processing Image Decomposition via the Combination of Sparse Representations and a Variational Approach , 2022 .
[15] I. Daubechies,et al. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.
[16] G. Beylkin. On the Fast Fourier Transform of Functions with Singularities , 1995 .
[17] Valérie R. Wajs,et al. A variational formulation for frame-based inverse problems , 2007 .
[18] Michael Elad,et al. Analysis versus synthesis in signal priors , 2006, 2006 14th European Signal Processing Conference.