Complex wavelet regularization for solving inverse problems in remote sensing

Many problems in remote sensing can be modeled as the minimization of the sum of a data term and a prior term. We propose to use a new complex wavelet based prior and an efficient scheme to solve these problems. We show some results on a problem of image reconstruction with noise, irregular sampling and blur. We also show a comparison between two widely used priors in image processing: sparsity and regularity priors.

[1]  Mila Nikolova,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.

[2]  Arkadi S. Nemirovsky,et al.  Information-based complexity of linear operator equations , 1992, J. Complex..

[3]  ANTONIN CHAMBOLLE,et al.  An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.

[4]  Y. Nesterov Gradient methods for minimizing composite objective function , 2007 .

[5]  Jean-François Aujol,et al.  Irregular to Regular Sampling, Denoising, and Deconvolution , 2009, Multiscale Model. Simul..

[6]  Mila Nikolova,et al.  Efficient Minimization Methods of Mixed l2-l1 and l1-l1 Norms for Image Restoration , 2005, SIAM J. Sci. Comput..

[7]  Josiane Zerubia,et al.  Satellite image reconstruction from an irregular sampling , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[8]  Laure Blanc-Féraud,et al.  Reconstruction d'images satellitaires à partir d'un échantillonnage irrégulier , 2008 .

[9]  Richard Baraniuk,et al.  The Dual-tree Complex Wavelet Transform , 2007 .

[10]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[11]  Pierre Weiss,et al.  Algorithmes rapides d'optimisation convexe. Applications à la reconstruction d'images et à la détection de changements. (Fast algorithms for convex optimization. Applications to image reconstruction and change detection) , 2008 .

[12]  Stanley Osher,et al.  Total variation based image restoration with free local constraints , 1994, Proceedings of 1st International Conference on Image Processing.

[13]  Antonin Chambolle,et al.  Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage , 1998, IEEE Trans. Image Process..

[14]  Michael Elad,et al.  Submitted to Ieee Transactions on Image Processing Image Decomposition via the Combination of Sparse Representations and a Variational Approach , 2022 .

[15]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[16]  G. Beylkin On the Fast Fourier Transform of Functions with Singularities , 1995 .

[17]  Valérie R. Wajs,et al.  A variational formulation for frame-based inverse problems , 2007 .

[18]  Michael Elad,et al.  Analysis versus synthesis in signal priors , 2006, 2006 14th European Signal Processing Conference.