Construction of Nearly Orthogonal Nedelec Bases for Rapid Convergence with Multilevel Preconditioned Solvers

This paper presents a systematic approach to constructing high-order tangential vector basis functions for the multilevel finite element solution of electromagnetic wave problems. The new bases allow easy computation of a preconditioner to eliminate or at least weaken the indefiniteness of the system matrix and thus reduce the condition number of the system matrix. When these bases are used in multilevel solutions, where the multilevels correspond to the order of the basis functions, the resulting p-multilevel-ILU preconditioned conjugate gradient method (MPCG) provides an optimal rate of convergence. We first derive an admissible set of vectors of order p, and decompose this set into two subspaces---rotational and irrotational (gradient). We then reduce the number of vectors by making them orthogonal to all previously constructed lower-order bases. The remaining vectors are made mutually orthogonal in both the vector space and in the range space of the curl operator. The resulting vector basis functions provide maximum orthogonality while maintaining tangential continuity of the field. The zeroth-order space is further decomposed using a scalar-vector formulation to eliminate convergence problems at extremely low frequencies. Numerical experiments show that number of iterations needed for the solution by MPCG is basically constant, regardless of the order of the basis or of the matrix size. Computational speed is improved by several orders of magnitude due to the fast matrix solution of MPCG and to the high accuracy of the higher-order bases.

[1]  Peter Monk,et al.  Discrete compactness and the approximation of Maxwell's equations in R3 , 2001, Math. Comput..

[2]  J. P. Webb,et al.  Hierarchal Scalar and vector Tetrahedra , 1992, Digest of the Fifth Biennial IEEE Conference on Electromagnetic Field Computation.

[3]  Ralf Hiptmair,et al.  Canonical construction of finite elements , 1999, Math. Comput..

[4]  Ernst Rank,et al.  The p‐version of the finite element method for domains with corners and for infinite domains , 1990 .

[5]  R. Hiptmair Multigrid Method for Maxwell's Equations , 1998 .

[6]  Jin-Fa Lee,et al.  Efficient finite element solvers for the Maxwell equations in the frequency domain , 1999 .

[7]  Roberto D. Graglia,et al.  Higher order interpolatory vector bases for computational electromagnetics," Special Issue on "Advanced Numerical Techniques in Electromagnetics , 1997 .

[8]  J.-C. Verite,et al.  A mixed fem-biem method to solve 3-D eddy-current problems , 1982 .

[9]  M. Costabel,et al.  Singularities of Maxwell interface problems , 1999 .

[10]  Salvatore Caorsi,et al.  On the Convergence of Galerkin Finite Element Approximations of Electromagnetic Eigenproblems , 2000, SIAM J. Numer. Anal..

[11]  John L. Volakis,et al.  Condition numbers for various FEM matrices , 1999 .

[12]  L. S. Andersen,et al.  Condition numbers for various FEM matrices , 1999, IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010).

[13]  Z. Cendes Vector finite elements for electromagnetic field computation , 1991 .

[14]  D. Boffi,et al.  Computational Models of Electromagnetic Resonators: Analysis of Edge Element Approximation , 1999 .

[15]  O. Biro,et al.  A joint vector and scalar potential formulation for driven high frequency problems using hybrid edge and nodal finite elements , 1996 .

[16]  Guglielmo Rubinacci,et al.  Solution of three dimensional eddy current problems by integral and differential methods , 1988 .

[17]  Z. Cendes,et al.  Spurious modes in finite-element methods , 1995 .

[18]  Andrew F. Peterson,et al.  Higher-order vector finite elements for tetrahedral cells , 1995, IEEE Antennas and Propagation Society International Symposium. 1995 Digest.

[19]  Jin-Fa Lee,et al.  Tangential vector finite elements for electromagnetic field computation , 1991 .

[20]  L. Demkowicz,et al.  De Rham diagram for hp finite element spaces , 2000 .

[21]  Z. J. Cendes,et al.  Combined finite element-modal solution of three-dimensional eddy current problems , 1988 .

[22]  L. S. Andersen,et al.  Hierarchical tangential vector finite elements for tetrahedra , 1998 .

[23]  Jan Mandel,et al.  An iterative solver for p-version finite elements in three dimensions , 1994 .

[24]  J.,et al.  EFFICIENT PRECONDITIONING FOR THE p-VERSION FINITE ELEMENT METHOD IN TWO DIMENSIONS , .

[25]  Ning Hu,et al.  Multi-p Preconditioners , 1997, SIAM J. Sci. Comput..

[26]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[27]  J. Pasciak,et al.  Convergence estimates for product iterative methods with applications to domain decomposition , 1991 .

[28]  J. P. Webb Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements , 1999 .

[29]  Peter Monk,et al.  On the p- and hp-extension of Nédélec's curl-conforming elements , 1994 .

[30]  Oszkar Biro,et al.  Nodal and edge element analysis of inhomogeneously loaded 3D cavities , 1992 .

[31]  L. Demkowicz,et al.  Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements , 1998 .

[32]  Daniele Boffi,et al.  Fortin operator and discrete compactness for edge elements , 2000, Numerische Mathematik.

[33]  Z. J. Cendes,et al.  Numerically stable finite element methods for the Galerkin solution of eddy current problems , 1989 .

[34]  Jin-Fa Lee,et al.  Hierarchical methods for solving matrix equations from TVFEMs for microwave components , 1999 .

[35]  M. L. Barton,et al.  New vector finite elements for three‐dimensional magnetic field computation , 1987 .

[36]  Panayot S. Vassilevski,et al.  Stabilizing the Hierarchical Basis by Approximate Wavelets II: Implementation and Numerical Results , 1998, SIAM J. Sci. Comput..

[37]  Jon P. Webb,et al.  The Low-freouency Performance Of H-/spl phi/ And T-/spl omega/ Methods Using Edge Elements For 3d Eddy Current Problems , 1993 .

[38]  Ivo Babuška,et al.  The Problem of Selecting the Shape Functions for a p-Type Finite Element , 1989 .