Full abstraction for non-deterministic and probabilistic extensions of PCF I: The angelic cases

Abstract We examine several extensions and variants of Plotkin's language PCF, including non-deterministic and probabilistic choice constructs. For each, we give an operational and a denotational semantics, and compare them. In each case, we show soundness and computational adequacy: the two semantics compute the same values at ground types. Beyond this, we establish full abstraction (the observational preorder coincides with the denotational preorder) in a number of cases. In the probabilistic cases, this requires the addition of so-called statistical termination testers to the language.

[1]  Jean Goubault-Larrecq,et al.  Isomorphism theorems between models of mixed choice , 2015, Mathematical Structures in Computer Science.

[2]  Michael W. Mislove,et al.  Topology, domain theory and theoretical computer science , 1998 .

[3]  Jean Goubault-Larrecq,et al.  Continuous Previsions , 2007, CSL.

[4]  Annabelle McIver,et al.  Demonic, angelic and unbounded probabilistic choices in sequential programs , 2001, Acta Informatica.

[5]  Jean Goubault-Larrecq Non-Hausdorff Topology and Domain Theory - Selected Topics in Point-Set Topology , 2013, New Mathematical Monographs.

[6]  Jerzy Tiuryn,et al.  A New Characterization of Lambda Definability , 1993, TLCA.

[7]  Klaus Keimel,et al.  Semantic Domains for Combining Probability and Non-Determinism , 2005, Electronic Notes in Theoretical Computer Science.

[8]  Shin-ya Katsumata,et al.  A Semantic Formulation of TT-Lifting and Logical Predicates for Computational Metalanguage , 2005, CSL.

[9]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[10]  Peter W. O'Hearn,et al.  Kripke Logical Relations and PCF , 1995, Inf. Comput..

[11]  Radha Jagadeesan,et al.  Full Abstraction for PCF , 1994, Inf. Comput..

[12]  Anders Sandholm,et al.  A Relational Account of Call-by-Value Sequentiality , 2002, Inf. Comput..

[13]  Thomas Ehrhard,et al.  Probabilistic coherence spaces are fully abstract for probabilistic PCF , 2014, POPL.

[14]  Vincent Danos,et al.  Probabilistic game semantics , 2002, TOCL.

[15]  Pierre-Louis Curien,et al.  An Abstract Framework for Environment Machines , 1991, Theor. Comput. Sci..

[16]  Klaus Keimel,et al.  The way-below relation of function spaces over semantic domains , 1998 .

[17]  Michael W. Mislove Nondeterminism and Probabilistic Choice: Obeying the Laws , 2000, CONCUR.

[18]  C.-H. Luke Ong,et al.  On Full Abstraction for PCF: I, II, and III , 2000, Inf. Comput..

[19]  Achim Jung,et al.  The troublesome probabilistic powerdomain , 1997, COMPROX.

[20]  J E A N G O U B A U L T-L A De Groot Duality and Models of Choice : Angels , Demons , and Nature , 2009 .

[21]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..

[22]  Klaus Keimel,et al.  The probabilistic powerdomain for stably compact spaces , 2004, Theor. Comput. Sci..

[23]  Russell Harmer,et al.  A fully abstract game semantics for finite nondeterminism , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[24]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[25]  Annabelle McIver,et al.  Probabilistic predicate transformers , 1996, TOPL.

[26]  Reinhold Heckmann Abstract valuations: A novel representation of Plotkin power domain and Vietoris hyperspace , 1997, MFPS.

[27]  R. D. Tennent,et al.  Applications of Categories in Computer Science: Semantics of local variables , 1992 .

[28]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[29]  Claire Jones,et al.  Probabilistic non-determinism , 1990 .

[30]  Regina Tix,et al.  Continuous D-cones: convexity and powerdomain constructions , 1999 .

[31]  G.D. Plotkin,et al.  LCF Considered as a Programming Language , 1977, Theor. Comput. Sci..

[32]  Thomas Streicher,et al.  Domain-theoretic foundations of functional programming , 2006 .

[33]  C. Jones,et al.  A probabilistic powerdomain of evaluations , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[34]  Andrea Schalk,et al.  Algebras for generalized power constructions , 1993 .

[35]  Peter W. O'Hearn,et al.  Objects, Interference, and the Yoneda Embedding , 1999, Theor. Comput. Sci..

[36]  Peter W. O'Hearn,et al.  Objects, interference and the Yoneda embedding , 1995, MFPS.

[37]  Klaus Keimel,et al.  Semantic Domains for Combining Probability and Non-Determinism , 2005, Electron. Notes Theor. Comput. Sci..

[38]  Joël Ouaknine,et al.  Axioms for Probability and Nondeterminism , 2004, EXPRESS.

[39]  Martín Hötzel Escardó Semi-decidability of May, Must and Probabilistic Testing in a Higher-type Setting , 2009, MFPS.

[40]  Jean Goubault-Larrecq Prevision Domains and Convex Powercones , 2008, FoSSaCS.

[41]  I. Stark,et al.  Operational reasoning for functions with local state , 1999 .

[42]  Peter W. O'Hearn,et al.  Parametricity and local variables , 1995, JACM.