Experimental detection of terahertz radiation in bundles of single wall carbon nanotubes
暂无分享,去创建一个
K. S. Yngvesson | Eric Polizzi | J. Nicholson | R. Zannoni | E. Polizzi | K. Yngvesson | R. Zannoni | J. Nicholson | K. Fu | Bo Fu | S. H. Adams | A. Ouarraoui | J. Donovan | K. Fu | S. Adams | J. Donovan | B. Fu | A. Ouarraoui
[1] T. Maung. on in C , 2010 .
[2] Terahertz detection in single wall carbon nanotubes , 2007, 0711.2681.
[3] P. Burke. Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes , 2002 .
[4] Quantized phonon spectrum of single-wall carbon nanotubes , 2000, Science.
[5] Eric Polizzi,et al. Efficient modeling techniques for atomistic-based electronic density calculations , 2008 .
[6] Daniel E. Prober,et al. Superconducting terahertz mixer using a transition-edge microbolometer , 1993 .
[7] K. S. Yngvesson,et al. Very wide bandwidth hot electron bolometer heterodyne detectors based on single-walled carbon nanotubes , 2005 .
[8] John J. Plombon,et al. High-frequency electrical properties of individual and bundled carbon nanotubes , 2007 .
[9] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[10] E. Kaxiras,et al. Schottky barrier formation at a carbon nanotube—metal junction , 2006 .
[11] P. Ordejón,et al. Density-functional method for nonequilibrium electron transport , 2001, cond-mat/0110650.
[12] Qian Wang,et al. Suspended carbon nanotube quantum wires with two gates. , 2005, Small.
[13] Mark Lee,et al. Ballistic cooling in a wideband two-dimensional electron gas bolometric mixer , 2002 .
[14] Ahmed H. Sameh,et al. A parallel hybrid banded system solver: the SPIKE algorithm , 2006, Parallel Comput..
[15] Lin-wang Wang,et al. Elastic quantum transport calculations for molecular nanodevices using plane waves , 2006 .
[16] M. Zhang,et al. Radio-frequency transmission properties of carbon nanotubes in a field-effect transistor configuration , 2006, IEEE Electron Device Letters.
[17] Y. Kawazoe,et al. Why the all-electron full-potential approach is suitable for calculations on fullerenes and nanotubes? , 2001, Journal of molecular graphics & modelling.
[18] A. Lakhtakia,et al. Electromagnetic wave propagation in an almost circular bundle of closely packed metallic carbon nanotubes , 2007, 0705.2866.
[19] Andrew G. Glen,et al. APPL , 2001 .
[20] James Hone,et al. Scaling of resistance and electron mean free path of single-walled carbon nanotubes. , 2007, Physical review letters.
[21] Zhaohui Zhong,et al. Terahertz time-domain measurement of ballistic electron resonance in a single-walled carbon nanotube. , 2008, Nature nanotechnology.
[22] K. Fu. Metallic Carbon Nanotubes, Microwave Characterization And Development Of A Terahertz Detector , 2008 .
[23] Eric Pop,et al. The role of electrical and thermal contact resistance for Joule breakdown of single-wall carbon nanotubes , 2008, Nanotechnology.
[24] G. Hanson. Fundamental transmitting properties of carbon nanotube antennas , 2005, IEEE Transactions on Antennas and Propagation.
[25] Kazuya Nakayama,et al. Detection system operating at up to 7THz using quasioptics and Schottky barrier diodes , 2006 .
[26] Peter Burke,et al. Carbon nanotube radio. , 2007, Nano letters.
[27] J. Ihm,et al. Ab initio pseudopotential method for the calculation of conductance in quantum wires , 1999 .
[28] Olivier Pinaud,et al. Transient simulations of a resonant tunneling diode , 2002 .
[29] Sigfrid K. Yngvesson,et al. A New Hot Electron Bolometer Heterodyne Detector Based On Single-Walled Carbon Nanotubes , 2005 .
[30] Sigfrid Yngvesson,et al. Microwave Semiconductor Devices , 1991 .