Visual Motion Processing in Macaque V2.

In the primate visual system, direction-selective (DS) neurons are critical for visual motion perception. While DS neurons in the dorsal visual pathway have been well characterized, the response properties of DS neurons in other major visual areas are largely unexplored. Recent optical imaging studies in monkey visual cortex area 2 (V2) revealed clusters of DS neurons. This imaging method facilitates targeted recordings from these neurons. Using optical imaging and single-cell recording, we characterized detailed response properties of DS neurons in macaque V2. Compared with DS neurons in the dorsal areas (e.g., middle temporal area [MT]), V2 DS neurons have a smaller receptive field and a stronger antagonistic surround. They do not code speed or plaid motion but are sensitive to motion contrast. Our results suggest that V2 DS neurons play an important role in figure-ground segregation. The clusters of V2 DS neurons are likely specialized functional systems for detecting motion contrast.

[1]  K. Kawano,et al.  Difference in Visual Motion Representation between Cortical Areas MT and MST during Ocular Following Responses , 2014, The Journal of Neuroscience.

[2]  G. Orban,et al.  Processing of kinetically defined boundaries in areas V1 and V2 of the macaque monkey. , 2000, Journal of neurophysiology.

[3]  S. Zeki,et al.  The functional organization of area V2, I: Specialization across stripes and layers , 2002, Visual Neuroscience.

[4]  J. B. Levitt,et al.  Receptive fields and functional architecture of macaque V2. , 1994, Journal of neurophysiology.

[5]  R. von der Heydt,et al.  Illusory contours and cortical neuron responses. , 1984, Science.

[6]  R. Shapley,et al.  Visual spatial characterization of macaque V1 neurons. , 2001, Journal of neurophysiology.

[7]  H. Tamura,et al.  Less Segregated Processing of Visual Information in V2 than in V1 of the Monkey Visual Cortex , 1996, The European journal of neuroscience.

[8]  田中 啓治 Analysis of Local and Wide-Field Movements in the Superior Temporal Visual Areas of the Macaque Monkey , 1987 .

[9]  John W Morley,et al.  Spatial precision of population activity in primate area MT. , 2015, Journal of neurophysiology.

[10]  E. DeYoe,et al.  Segregation of efferent connections and receptive field properties in visual area V2 of the macaque , 1985, Nature.

[11]  D. Snodderly,et al.  Direction selectivity in V1 of alert monkeys: evidence for parallel pathways for motion processing , 2007, The Journal of physiology.

[12]  J Allman,et al.  Direction- and Velocity-Specific Responses from beyond the Classical Receptive Field in the Middle Temporal Visual Area (MT) , 1985, Perception.

[13]  R. Born,et al.  Segregation of global and local motion processing in primate middle temporal visual area , 1993, Nature.

[14]  G. Orban,et al.  Visual Motion Processing Investigated Using Contrast Agent-Enhanced fMRI in Awake Behaving Monkeys , 2001, Neuron.

[15]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[16]  R. Born,et al.  Integrating motion and depth via parallel pathways , 2008, Nature Neuroscience.

[17]  D Regan,et al.  Form from motion parallax and form from luminance contrast: vernier discrimination. , 1986, Spatial vision.

[18]  Julio C. Martinez-Trujillo,et al.  Sharp emergence of feature-selective sustained activity along the dorsal visual pathway , 2014, Nature Neuroscience.

[19]  Hisashi Tanigawa,et al.  A Motion Direction Map in Macaque V2 , 2010, Neuron.

[20]  R A Andersen,et al.  The response of area MT and V1 neurons to transparent motion , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  G. Orban,et al.  Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: influence of eccentricity. , 1986, Journal of neurophysiology.

[22]  Victor A. F. Lamme,et al.  Figure-ground activity in primary visual cortex is suppressed by anesthesia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[23]  K R Gegenfurtner,et al.  Processing of color, form, and motion in macaque area V2 , 1996, Visual Neuroscience.

[24]  Amiram Grinvald,et al.  Dural substitute for long-term imaging of cortical activity in behaving monkeys and its clinical implications , 2002, Journal of Neuroscience Methods.

[25]  Nicholas J. Priebe,et al.  Tuning for Spatiotemporal Frequency and Speed in Directionally Selective Neurons of Macaque Striate Cortex , 2006, The Journal of Neuroscience.

[26]  Shude Zhu,et al.  A Motion Direction Preference Map in Monkey V4 , 2013, Neuron.

[27]  R A Andersen,et al.  Transparent motion perception as detection of unbalanced motion signals. III. Modeling , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  R. Andersen,et al.  Transparent motion perception as detection of unbalanced motion signals. II. Physiology , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  G. Orban,et al.  Shape and Spatial Distribution of Receptive Fields and Antagonistic Motion Surrounds in the Middle Temporal Area (V5) of the Macaque , 1995, The European journal of neuroscience.

[30]  J. Movshon,et al.  Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[31]  G. Orban,et al.  The spatial distribution of the antagonistic surround of MT/V5 neurons. , 1997, Cerebral cortex.

[32]  J. Movshon,et al.  Dynamics of motion signaling by neurons in macaque area MT , 2005, Nature Neuroscience.

[33]  D. Hubel Single unit activity in striate cortex of unrestrained cats , 1959, The Journal of physiology.

[34]  A. Sillito,et al.  Surround suppression in primate V1. , 2001, Journal of neurophysiology.

[35]  J Anthony Movshon,et al.  Visual Response Properties of V1 Neurons Projecting to V2 in Macaque , 2013, The Journal of Neuroscience.

[36]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: anatomic location and visual response properties. , 1993, Journal of neurophysiology.

[37]  Edward M. Callaway,et al.  Specialized Circuits from Primary Visual Cortex to V2 and Area MT , 2007, Neuron.

[38]  D. Regan,et al.  Dissociation of orientation discrimination from form detection for motion-defined bars and luminance-defined bars: Effects of dot lifetime and presentation duration , 1992, Vision Research.

[39]  Christopher C. Pack,et al.  Contrast dependence of suppressive influences in cortical area MT of alert macaque. , 2005, Journal of neurophysiology.

[40]  Moshe Gur,et al.  Cerebral Cortex doi:10.1093/cercor/bhi003 Orientation and Direction Selectivity of Neurons in V1 of Alert Monkeys: Functional Relationships and Laminar Distributions , 2022 .

[41]  J. B. Levitt,et al.  Functional properties of neurons in macaque area V3. , 1997, Journal of neurophysiology.

[42]  J. Baizer,et al.  Visual responses of area 18 neurons in awake, behaving monkey. , 1977, Journal of neurophysiology.

[43]  Haidong D. Lu,et al.  Rivalry-Like Neural Activity in Primary Visual Cortex in Anesthetized Monkeys , 2016, The Journal of Neuroscience.

[44]  G. Orban,et al.  Response latency of macaque area MT/V5 neurons and its relationship to stimulus parameters. , 1999, Journal of neurophysiology.

[45]  J. Assad,et al.  Direction selectivity of neurons in the macaque lateral intraparietal area. , 2009, Journal of neurophysiology.

[46]  D. C. Essen,et al.  The topographic organization of rhesus monkey prestriate cortex. , 1978, The Journal of physiology.

[47]  M. Hawken,et al.  Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  C. Koch,et al.  The analysis of visual motion: from computational theory to neuronal mechanisms. , 1986, Annual review of neuroscience.

[49]  E. Callaway,et al.  The Parvocellular LGN Provides a Robust Disynaptic Input to the Visual Motion Area MT , 2006, Neuron.

[50]  Carlos R. Ponce,et al.  Contributions of Indirect Pathways to Visual Response Properties in Macaque Middle Temporal Area MT , 2011, The Journal of Neuroscience.

[51]  G. Orban,et al.  Processing of kinetically defined boundaries in the cortical motion area MT of the macaque monkey. , 1995, Journal of neurophysiology.

[52]  R. Desimone,et al.  Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[53]  Bart G Borghuis,et al.  Dynamics of directional selectivity in MT receptive field centre and surround , 2005, The European journal of neuroscience.

[54]  T. Albright,et al.  Adaptive Surround Modulation in Cortical Area MT , 2007, Neuron.

[55]  Guy A. Orban,et al.  Similarities and differences in motion processing between the human and macaque brain: evidence from fMRI , 2003, Neuropsychologia.

[56]  B. C. Motter,et al.  Common and differential effects of attentive fixation on the excitability of parietal and prestriate (V4) cortical visual neurons in the macaque monkey , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  D. J. Felleman,et al.  Receptive-field properties of neurons in middle temporal visual area (MT) of owl monkeys. , 1984, Journal of neurophysiology.

[58]  D. J. Felleman,et al.  Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. , 1987, Journal of neurophysiology.

[59]  Ralf M. Haefner,et al.  A Modality-Specific Feedforward Component of Choice-Related Activity in MT , 2015, Neuron.

[60]  J. Movshon,et al.  Adaptive Temporal Integration of Motion in Direction-Selective Neurons in Macaque Visual Cortex , 2004, The Journal of Neuroscience.

[61]  D. Bradley,et al.  Structure and function of visual area MT. , 2005, Annual review of neuroscience.

[62]  Nicholas A. Steinmetz,et al.  Visual Space is Compressed in Prefrontal Cortex Before Eye Movements , 2014, Nature.

[63]  Ari Rosenberg,et al.  Responses to direction and transparent motion stimuli in area FST of the macaque , 2008, Visual Neuroscience.

[64]  Lawrence C. Sincich,et al.  Independent Projection Streams from Macaque Striate Cortex to the Second Visual Area and Middle Temporal Area , 2003, The Journal of Neuroscience.

[65]  D. Pollen,et al.  Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. , 1985, The Journal of physiology.

[66]  R. M. Siegel,et al.  Analysis of optic flow in the monkey parietal area 7a. , 1997, Cerebral cortex.

[67]  Hong Zhou,et al.  Representation of stereoscopic edges in monkey visual cortex , 2000, Vision Research.

[68]  W. Newsome,et al.  Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT. , 1986, Journal of neurophysiology.

[69]  J. Bullier,et al.  Visual latencies in areas V1 and V2 of the macaque monkey , 1995, Visual Neuroscience.

[70]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[71]  E. Peterhans,et al.  Functional Organization of Area V2 in the Alert Macaque , 1993, The European journal of neuroscience.

[72]  J. Baizer Receptive field properties of V3 neurons in monkey. , 1982, Investigative ophthalmology & visual science.

[73]  Duje Tadin,et al.  Linking Psychophysics and Physiology of Center-Surround Interactions in Visual Motion Processing , 2005 .

[74]  Anthony J. Movshon,et al.  Visual Response Properties of Striate Cortical Neurons Projecting to Area MT in Macaque Monkeys , 1996, The Journal of Neuroscience.

[75]  R. Born Center-surround interactions in the middle temporal visual area of the owl monkey. , 2000, Journal of neurophysiology.

[76]  Victor A. F. Lamme The neurophysiology of figure-ground segregation in primary visual cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[77]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[78]  Alexander Borst,et al.  Visual Circuits for Direction Selectivity. , 2017, Annual review of neuroscience.

[79]  T. Albright Direction and orientation selectivity of neurons in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[80]  J. Movshon,et al.  Adaptation changes the direction tuning of macaque MT neurons , 2004, Nature Neuroscience.

[81]  R. Desimone,et al.  Local precision of visuotopic organization in the middle temporal area (MT) of the macaque , 2004, Experimental Brain Research.

[82]  D. V. van Essen,et al.  Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[83]  L. Palmer,et al.  Effects of surround motion on receptive-field gain and structure in area 17 of the cat , 2002, Visual Neuroscience.

[84]  M. Rizzo,et al.  The relative efficacy of cues for two-dimensional shape perception , 1996, Vision Research.

[85]  J H Maunsell,et al.  Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[86]  D. Regan Orientation discrimination for objects defined by relative motion and objects defined by luminance contrast , 1989, Vision Research.

[87]  Shude Zhu,et al.  An Orientation Map for Motion Boundaries in Macaque V2. , 2016, Cerebral cortex.

[88]  Nicholas J. Priebe,et al.  The Neural Representation of Speed in Macaque Area MT/V5 , 2003, The Journal of Neuroscience.

[89]  Bin Zhang,et al.  Delayed maturation of receptive field center/surround mechanisms in V2. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[90]  Lawrence C. Sincich,et al.  The circuitry of V1 and V2: integration of color, form, and motion. , 2005, Annual review of neuroscience.

[91]  O. Braddick Segmentation versus integration in visual motion processing , 1993, Trends in Neurosciences.

[92]  C. Galletti,et al.  Functional Properties of Neurons in the Anterior Bank of the Parieto‐occipital Sulcus of the Macaque Monkey , 1991, The European journal of neuroscience.

[93]  R. Desimone,et al.  Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. , 1987, Journal of neurophysiology.

[94]  Leslie G. Ungerleider,et al.  Multiple visual areas in the caudal superior temporal sulcus of the macaque , 1986, The Journal of comparative neurology.