Simple stabilizing matrices for the computation of compressible flows in primitive variables

The key ingredient that balances stability and accuracy in stabilized formulations is the parameter of intrinsic time-scales. For multi-dimensional hyperbolic systems of equations, this parameter is a matrix and the available expressions for its computation involve the solution of an eigenvalue problem, which can be tedious or cpu time consuming. Thus, for formulations based on primitive variables including pressure, a couple of simple stabilizing matrices are presented which are easy to implement and cpu-economic. Numerical evaluations show the performance of the various choices.

[1]  Tayfun E. Tezduyar,et al.  SUPG finite element computation of compressible flows with the entropy and conservation variables formulations , 1993 .

[2]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[3]  Thomas J. R. Hughes,et al.  A comparative study of different sets of variables for solving compressible and incompressible flows , 1998 .

[4]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[5]  Guillermo Hauke,et al.  a Unified Approach to Compressible and Incompressible Flows and a New Entropy-Consistent Formulation of the K - Model. , 1994 .

[6]  Thomas J. R. Hughes,et al.  Symmetrization of conservation laws with entropy for high-temperature hypersonic computations , 1990 .

[7]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[8]  Guillermo Hauke A Unified Approach to Compressible and Incompressible Flows and a New Entropy-Consistent Formulation of the K-Epsilon Model. , 1995 .

[9]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier—Stokes equations and the second law of thermodynamics , 1986 .

[10]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[11]  Michel Fortin,et al.  Finite-element solution of compressible viscous flows using conservative variables , 1994 .

[12]  L. Franca,et al.  Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .

[13]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[14]  Kenneth E. Jansen,et al.  A better consistency for low-order stabilized finite element methods , 1999 .

[15]  Tayfun E. Tezduyar,et al.  SUPG finite element computation of viscous compressible flows based on the conservation and entropy variables formulations , 1993 .

[16]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics. X - The compressible Euler and Navier-Stokes equations , 1991 .

[17]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems , 1986 .

[18]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems , 1986 .

[19]  Tayfun E. Tezduyar,et al.  Finite element stabilization parameters computed from element matrices and vectors , 2000 .

[20]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .