Numerical Analysis of degenerate Connecting orbits for Maps
暂无分享,去创建一个
[1] Yu. A. Kuznetsov,et al. NUMERICAL DETECTION AND CONTINUATION OF CODIMENSION-TWO HOMOCLINIC BIFURCATIONS , 1994 .
[2] W. Hager. Applied Numerical Linear Algebra , 1987 .
[3] Y. Kuznetsov. Elements of applied bifurcation theory (2nd ed.) , 1998 .
[4] R. Seydel. From equilibrium to chaos , 1988 .
[5] V. I. Arnol'd,et al. Dynamical Systems V , 1994 .
[6] Stephen Schecter,et al. Rate of convergence of numerical approximations to homoclinic bifurcation points , 1995 .
[7] Jan-Martin Kleinkauf. Numerische Analyse tangentialer homokliner Orbits , 1998 .
[8] Floris Takens,et al. Bifurcations and stability of families of diffeomorphisms , 1983 .
[9] G. Sell,et al. The principle of spatial averaging and inertial manifolds for reaction-diffusion equations , 1987 .
[10] Björn Sandstede,et al. Convergence estimates for the numerical approximation of homoclinic solutions , 1997 .
[11] W. Beyn,et al. Chapter 4 – Numerical Continuation, and Computation of Normal Forms , 2002 .
[12] Stephen Wiggins,et al. Global Bifurcations and Chaos , 1988 .
[13] Wolf-Jürgen Beyn,et al. The Numerical Computation of Homoclinic Orbits for Maps , 1997 .
[14] E. Allgower,et al. Numerical Continuation Methods , 1990 .
[15] R. Seydel. From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis , 1988 .
[16] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[17] Superconvergence Estimates for the Numerical Computation of Heteroclinics for Maps , 1998 .
[18] Y. Kuznetsov. Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.
[19] Mark J. Friedman,et al. Numerical computation of heteroclinic orbits , 1989 .
[20] Willy Govaerts,et al. Numerical methods for bifurcations of dynamical equilibria , 1987 .
[21] Bernd Krauskopf,et al. Globalizing Two-Dimensional Unstable Manifolds of Maps , 1998 .
[22] T. Hüls. A model function for polynomial rates in discrete dynamical systems , 2004, Appl. Math. Lett..
[23] Thorsten Hüls. Numerische Approximation nicht-hyperbolischer heterokliner Orbits , 2003 .
[24] Bernhard Lani-Wayda. Hyperbolic Sets, Shadowing and Persistence for Noninvertible Mappings in Banach Spaces , 1995 .
[25] Eugene L. Allgower,et al. Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.
[26] W. Beyn,et al. On manifolds of connecting orbits in discretizations of dynamical systems , 2003 .
[27] Jan{martin Kleinkauf,et al. The Numerical Computation and Geometrical Analysis of Heteroclinic Tangencies , 1998 .
[28] Hans-Otto Walther,et al. Hyperbolic sets, transversal homoclinic trajectories, and symbolic dynamics for C1-maps in banach spaces , 1990 .
[29] S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .
[30] Bernold Fiedler,et al. Discretization of homoclinic orbits, rapid forcing, and "invisible" chaos , 1996 .
[31] Mark J. Friedman,et al. Numerical computation and continuation of invariant manifolds connecting fixed points , 1991 .
[32] R. Seydel. Numerical Computation of Primary Bifurcation Points in Ordinary Differential Equations , 1979 .
[33] Wolf-Jürgen Beyn,et al. The Numerical Computation of Connecting Orbits in Dynamical Systems , 1990 .
[34] Mark J. Friedman,et al. Computational methods for global analysis of homoclinic and heteroclinic orbits: A case study , 1993 .
[35] Stephen Wiggins. Global Bifurcations and Chaos: Analytical Methods , 1988 .
[36] Stephen Schecter,et al. Numerical computation of saddle-node homoclinic bifurcation points , 1993 .
[37] Wolf-Jürgen Beyn,et al. The effect of discretization on homoclinic orbits , 1987 .
[38] Kenneth J. Palmer,et al. Exponential Dichotomies, the Shadowing Lemma and Transversal Homoclinic Points , 1988 .
[39] Jack K. Hale,et al. Symbolic dynamics and nonlinear semiflows , 1986 .
[40] J. Hale,et al. Dynamics and Bifurcations , 1991 .
[41] Thorsten Hüls,et al. Polynomial Estimates and Discrete Saddle-Node Homoclinic Orbits , 2001 .
[42] Floris Takens,et al. Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations : fractal dimensions and infinitely many attractors , 1993 .
[43] Wolf-Jürgen Beyn,et al. Discretizations of dynamical systems with a saddle-node homoclinic orbit , 1996 .
[44] Andrew M. Stuart,et al. The Numerical Computation of Heteroclinic Connections in Systems of Gradient Partial Differential Equations , 1993, SIAM J. Appl. Math..
[45] S. Smale. Diffeomorphisms with Many Periodic Points , 1965 .