Numerical Analysis of degenerate Connecting orbits for Maps

This paper contains a survey of numerical methods for connecting orbits in discrete dynamical systems. Special emphasis is put on degenerate cases where either the orbit loses transversality or one of its endpoints loses hyperbolicity. Numerical methods that approximate the connecting orbits by finite orbit sequences are described in detail and theoretical results on the error analysis are provided. For most of the degenerate cases we present examples and numerical results that illustrate the applicability of the methods and the validity of the error estimates.

[1]  Yu. A. Kuznetsov,et al.  NUMERICAL DETECTION AND CONTINUATION OF CODIMENSION-TWO HOMOCLINIC BIFURCATIONS , 1994 .

[2]  W. Hager Applied Numerical Linear Algebra , 1987 .

[3]  Y. Kuznetsov Elements of applied bifurcation theory (2nd ed.) , 1998 .

[4]  R. Seydel From equilibrium to chaos , 1988 .

[5]  V. I. Arnol'd,et al.  Dynamical Systems V , 1994 .

[6]  Stephen Schecter,et al.  Rate of convergence of numerical approximations to homoclinic bifurcation points , 1995 .

[7]  Jan-Martin Kleinkauf Numerische Analyse tangentialer homokliner Orbits , 1998 .

[8]  Floris Takens,et al.  Bifurcations and stability of families of diffeomorphisms , 1983 .

[9]  G. Sell,et al.  The principle of spatial averaging and inertial manifolds for reaction-diffusion equations , 1987 .

[10]  Björn Sandstede,et al.  Convergence estimates for the numerical approximation of homoclinic solutions , 1997 .

[11]  W. Beyn,et al.  Chapter 4 – Numerical Continuation, and Computation of Normal Forms , 2002 .

[12]  Stephen Wiggins,et al.  Global Bifurcations and Chaos , 1988 .

[13]  Wolf-Jürgen Beyn,et al.  The Numerical Computation of Homoclinic Orbits for Maps , 1997 .

[14]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[15]  R. Seydel From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis , 1988 .

[16]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[17]  Superconvergence Estimates for the Numerical Computation of Heteroclinics for Maps , 1998 .

[18]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[19]  Mark J. Friedman,et al.  Numerical computation of heteroclinic orbits , 1989 .

[20]  Willy Govaerts,et al.  Numerical methods for bifurcations of dynamical equilibria , 1987 .

[21]  Bernd Krauskopf,et al.  Globalizing Two-Dimensional Unstable Manifolds of Maps , 1998 .

[22]  T. Hüls A model function for polynomial rates in discrete dynamical systems , 2004, Appl. Math. Lett..

[23]  Thorsten Hüls Numerische Approximation nicht-hyperbolischer heterokliner Orbits , 2003 .

[24]  Bernhard Lani-Wayda Hyperbolic Sets, Shadowing and Persistence for Noninvertible Mappings in Banach Spaces , 1995 .

[25]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.

[26]  W. Beyn,et al.  On manifolds of connecting orbits in discretizations of dynamical systems , 2003 .

[27]  Jan{martin Kleinkauf,et al.  The Numerical Computation and Geometrical Analysis of Heteroclinic Tangencies , 1998 .

[28]  Hans-Otto Walther,et al.  Hyperbolic sets, transversal homoclinic trajectories, and symbolic dynamics for C1-maps in banach spaces , 1990 .

[29]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[30]  Bernold Fiedler,et al.  Discretization of homoclinic orbits, rapid forcing, and "invisible" chaos , 1996 .

[31]  Mark J. Friedman,et al.  Numerical computation and continuation of invariant manifolds connecting fixed points , 1991 .

[32]  R. Seydel Numerical Computation of Primary Bifurcation Points in Ordinary Differential Equations , 1979 .

[33]  Wolf-Jürgen Beyn,et al.  The Numerical Computation of Connecting Orbits in Dynamical Systems , 1990 .

[34]  Mark J. Friedman,et al.  Computational methods for global analysis of homoclinic and heteroclinic orbits: A case study , 1993 .

[35]  Stephen Wiggins Global Bifurcations and Chaos: Analytical Methods , 1988 .

[36]  Stephen Schecter,et al.  Numerical computation of saddle-node homoclinic bifurcation points , 1993 .

[37]  Wolf-Jürgen Beyn,et al.  The effect of discretization on homoclinic orbits , 1987 .

[38]  Kenneth J. Palmer,et al.  Exponential Dichotomies, the Shadowing Lemma and Transversal Homoclinic Points , 1988 .

[39]  Jack K. Hale,et al.  Symbolic dynamics and nonlinear semiflows , 1986 .

[40]  J. Hale,et al.  Dynamics and Bifurcations , 1991 .

[41]  Thorsten Hüls,et al.  Polynomial Estimates and Discrete Saddle-Node Homoclinic Orbits , 2001 .

[42]  Floris Takens,et al.  Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations : fractal dimensions and infinitely many attractors , 1993 .

[43]  Wolf-Jürgen Beyn,et al.  Discretizations of dynamical systems with a saddle-node homoclinic orbit , 1996 .

[44]  Andrew M. Stuart,et al.  The Numerical Computation of Heteroclinic Connections in Systems of Gradient Partial Differential Equations , 1993, SIAM J. Appl. Math..

[45]  S. Smale Diffeomorphisms with Many Periodic Points , 1965 .