Quantum entanglement and quantum operation

It is a simple introduction to quantum entanglement and quantum operations. The authors focus on some applications of quantum entanglement and relations between two-qubit entangled states and unitary operations. It includes remote state preparation by using any pure entangled states, nonlocal operation implementation using entangled states, entanglement capacity of two-qubit gates and two-qubit gates construction.

[1]  L-M Duan,et al.  Efficient quantum computation with probabilistic quantum gates. , 2005, Physical review letters.

[2]  Guang-Can Guo,et al.  Experimental teleportation of a quantum controlled-NOT gate. , 2004, Physical review letters.

[3]  Jun Zhang,et al.  Minimum construction of two-qubit quantum operations. , 2004, Physical review letters.

[4]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[5]  Ding Yaomin,et al.  Entanglement capacity of two-qubit unitary operator for rank two mixed states , 2007 .

[6]  Lin Chen,et al.  Probabilistic implementation of a nonlocal operation using a nonmaximally entangled state , 2005, quant-ph/0501107.

[7]  Benni Reznik,et al.  Implementing nonlocal gates with nonmaximally entangled states , 2005 .

[8]  Long Gui-lu,et al.  Partial Teleportation of Entanglement Through Natural Thermal Entanglement in Two-Qubit Heisenberg XXX Chain , 2007 .

[9]  J. Cirac,et al.  Optimal creation of entanglement using a two-qubit gate , 2000, quant-ph/0011050.

[10]  G. Guo,et al.  Faithful remote state preparation using finite classical bits and a nonmaximally entangled state , 2003, quant-ph/0307027.

[11]  A. Pati Minimum classical bit for remote preparation and measurement of a qubit , 1999, quant-ph/9907022.

[12]  Zhang Yong,et al.  Creation of Multipartite Entanglement and Entanglement Transfer via Heisenberg Interaction , 2005 .

[13]  Ye Peng,et al.  Probabilistic Implementation of Non-Local CNOT Operation and Entanglement Purification , 2004 .

[14]  G. Vidal,et al.  Universal quantum circuit for two-qubit transformations with three controlled-NOT gates , 2003, quant-ph/0307177.

[15]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[16]  Remote operations and interactions for systems of arbitrary-dimensional Hilbert space: State-operator approach , 2001, quant-ph/0107143.

[17]  Long Gui-lu,et al.  Creation of Entanglement with Nonlocal Operations , 2005 .

[18]  J. Eisert,et al.  Optimal local implementation of nonlocal quantum gates , 2000 .

[19]  Barry C. Sanders,et al.  Entangling power and operator entanglement in qudit systems , 2003 .

[20]  Hu Bao-Lin,et al.  Entanglement Capacity of Two-Qubit Unitary Operator with the Help of Auxiliary System , 2007 .

[21]  Guang-Can Guo,et al.  Efficient implementation of controlled rotations by using entanglement (5 pages) , 2006 .

[22]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[23]  Conditions for optimal construction of two-qubit nonlocal gates , 2004, quant-ph/0411058.

[24]  A. Harrow,et al.  Quantum dynamics as a physical resource , 2002, quant-ph/0208077.

[25]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.