Electrochemical Synthesis of Some Archetypical Zn2+, Cu2+, and Al3+ Metal Organic Frameworks

Several archetypical metal organic frameworks (MOFs), namely, HKUST-1, ZIF-8, MIL-100(Al), MIL-53(Al), and NH2-MIL-53(Al), were synthesized via anodic dissolution in an electrochemical cell. The influence of different reaction parameters such as solvent, electrolyte, voltage–current density, and temperature on the synthesis yield and textural properties of the MOFs obtained was investigated. The characterization of the samples involved X-ray diffraction, gas adsorption, atomic force microscopy, diffuse reflectance infrared Fourier transform spectroscopy, and scanning electron microscopy. In the present article, we demonstrate that electrochemical synthesis is a robust method offering additional degrees of freedom in the synthesis of these porous materials. The main advantages are the shorter synthesis time, the milder conditions, the facile synthesis of MOF nanoparticles, the morphology tuning and the high Faraday efficiencies. The synthesized MIL-53 and NH2-MIL-53 samples exhibit suppressed framework fle...

[1]  Freek Kapteijn,et al.  Metal–organic frameworks as scaffolds for the encapsulation of active species: state of the art and future perspectives , 2012 .

[2]  F. Kapteijn,et al.  Adsorption and separation of light gases on an amino-functionalized metal-organic framework: an adsorption and in situ XRD study. , 2012, ChemSusChem.

[3]  A Alec Talin,et al.  A roadmap to implementing metal-organic frameworks in electronic devices: challenges and critical directions. , 2011, Chemistry.

[4]  F. Kapteijn,et al.  Kinetic control of metal-organic framework crystallization investigated by time-resolved in situ X-ray scattering. , 2011, Angewandte Chemie.

[5]  Shyam Biswas,et al.  New functionalized flexible Al-MIL-53-X (X = -Cl, -Br, -CH3, -NO2, -(OH)2) solids: syntheses, characterization, sorption, and breathing behavior. , 2011, Inorganic chemistry.

[6]  Freek Kapteijn,et al.  Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. , 2011, Chemical communications.

[7]  F. Kapteijn,et al.  Understanding the anomalous alkane selectivity of ZIF-7 in the separation of light alkane/alkene mixtures. , 2011, Chemistry.

[8]  Mircea Dincă,et al.  Reductive electrosynthesis of crystalline metal-organic frameworks. , 2011, Journal of the American Chemical Society.

[9]  C. Serre,et al.  High-throughput and time-resolved energy-dispersive X-ray diffraction (EDXRD) study of the formation of CAU-1-(OH)2: microwave and conventional heating. , 2011, Chemistry.

[10]  F. Kapteijn,et al.  Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties , 2011 .

[11]  M. Roeffaers,et al.  Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability , 2011, Nature Chemistry.

[12]  F. Kapteijn,et al.  Thermodynamic analysis of the breathing of amino-functionalized MIL-53(Al) upon CO2 adsorption , 2011 .

[13]  François-Xavier Coudert,et al.  Structural transitions in MIL-53 (Cr): view from outside and inside. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[14]  F. Kapteijn,et al.  Complexity behind CO2 capture on NH2-MIL-53(Al). , 2011, Langmuir : the ACS journal of surfaces and colloids.

[15]  Z. Lai,et al.  Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. , 2011, Chemical communications.

[16]  Richard I. Walton,et al.  A time-resolved diffraction study of a window of stability in the synthesis of a copper carboxylate metal–organic framework , 2011 .

[17]  J. Jasinski,et al.  Structural evolution of zeolitic imidazolate framework-8. , 2010, Journal of the American Chemical Society.

[18]  F. Kapteijn,et al.  Ethane/ethene separation turned on its head: selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism. , 2010, Journal of the American Chemical Society.

[19]  Gérard Férey,et al.  Time-resolved in situ diffraction study of the solvothermal crystallization of some prototypical metal-organic frameworks. , 2010, Angewandte Chemie.

[20]  François-Xavier Coudert,et al.  Stress-Based Model for the Breathing of Metal-Organic Frameworks. , 2010, The journal of physical chemistry letters.

[21]  Freek Kapteijn,et al.  Building MOF bottles around phosphotungstic acid ships: One-pot synthesis of bi-functional polyoxometalate-MIL-101 catalysts , 2010 .

[22]  M. Burghammer,et al.  Synthesis, Single-Crystal X-ray Microdiffraction, and NMR Characterizations of the Giant Pore Metal-Organic Framework Aluminum Trimesate MIL-100 , 2009 .

[23]  Jan Fransaer,et al.  Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis , 2009 .

[24]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[25]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[26]  Michael O'Keeffe,et al.  Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[27]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[28]  A. Feldhoff,et al.  Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework , 2009 .

[29]  A. Vimont,et al.  XRD and IR structural investigations of a particular breathing effect in the MOF-type gallium terephthalate MIL-53(Ga). , 2009, Dalton transactions.

[30]  Daniel Gunzelmann,et al.  Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology. , 2009, Inorganic chemistry.

[31]  R. Fischer,et al.  Nanocrystals of [Cu3(btc)2] (HKUST-1): a combined time-resolved light scattering and scanning electron microscopy study. , 2009, Chemical communications.

[32]  T. Bein,et al.  High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1 , 2009 .

[33]  F. Kapteijn,et al.  Amino-based metal-organic frameworks as stable, highly active basic catalysts , 2009 .

[34]  Jun Kim,et al.  Sonochemical synthesis of MOF-5. , 2008, Chemical communications.

[35]  Martin P Attfield,et al.  Crystal growth of the nanoporous metal-organic framework HKUST-1 revealed by in situ atomic force microscopy. , 2008, Angewandte Chemie.

[36]  C. Serre,et al.  High-throughput assisted rationalization of the formation of metal organic frameworks in the Iron(III) aminoterephthalate solvothermal system. , 2008, Inorganic chemistry.

[37]  F. Kapteijn,et al.  Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina , 2008 .

[38]  M. Hartmann,et al.  Adsorptive separation of isobutene and isobutane on Cu3(BTC)2. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[39]  D. Farrusseng,et al.  MOFs as acid catalysts with shape selectivity properties , 2008 .

[40]  C. Serre,et al.  Structural effects of solvents on the breathing of metal-organic frameworks: an in situ diffraction study. , 2008, Angewandte Chemie.

[41]  C. Serre,et al.  An Explanation for the Very Large Breathing Effect of a Metal–Organic Framework during CO2 Adsorption , 2007 .

[42]  C. Serre,et al.  Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. , 2007, Chemical communications.

[43]  A. Corma,et al.  Synthesis of micro- and mesoporous molecular sieves at room temperature and neutral pH catalyzed by functional analogues of silicatein. , 2006, Chemical communications.

[44]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[45]  S. James,et al.  Solvent-free synthesis of a microporous metal–organic framework , 2006 .

[46]  Xiao-Ming Chen,et al.  Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. , 2006, Angewandte Chemie.

[47]  U. Mueller,et al.  Metal–organic frameworks—prospective industrial applications , 2006 .

[48]  Gérard Férey,et al.  A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. , 2004, Angewandte Chemie.

[49]  S. Kaskel,et al.  Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2 , 2004 .

[50]  Daniel A. Lowy,et al.  Miniaturized Reference Electrodes. II. Use in Corrosive, Biological, and Organic Media , 2004 .

[51]  A. Corma,et al.  Zeolite-based photocatalysts. , 2004, Chemical communications.

[52]  Gérard Férey,et al.  A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. , 2004, Chemistry.

[53]  C. Serre,et al.  Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M = Al3+, Cr3+), MIL-53. , 2003, Chemical communications.

[54]  Avelino Corma,et al.  State of the art and future challenges of zeolites as catalysts , 2003 .

[55]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[56]  G. Stucky,et al.  Efficient Catalysis of Polysiloxane Synthesis by Silicatein α Requires Specific Hydroxy and Imidazole Functionalities. , 1999, Angewandte Chemie.

[57]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[58]  Hailian Li,et al.  Selective Guest Binding by Tailored Channels in a 3-D Porous Zinc(II)−Benzenetricarboxylate Network , 1997 .

[59]  R. Kelly,et al.  A reference electrode for use in methanol solutions , 1996 .

[60]  J. Pickardt,et al.  catena-Triaqua-μ-[1,3,5-benzenetricarboxylato(2–)]-copper(II) , 1988 .

[61]  E. Pungor,et al.  Applications of ion-selective electrodes in nonaqueous and mixed solvents , 1983 .