Application of Artificial Pigments to Structure Determination and Study of Photoinduced Transformations of Retinal Proteins

The protonated Schiff bases of all-trans-retinal and its double bond isomers, 11-cis- and 13-cis-retinals, comprise the chromophores of bacteriorhodopsin, sensory rhodopsin, rhodopsin, and the Chlamydomonas photoreceptor pigment. Absorption of photons by these chromophores is directly responsible for the functioning of the various photopigments. Clarification of their extremely complex structures and mechanisms requires multidisciplinary collaboration. The study of synthetic retinal analogs and pigments reconstituted from analogs provides a powerful and indispensable tool for such clarification. This article summarizes the application of retinal analogs in the bioorganic, biophysical, and biochemical investigations of the various retinal pigments.

[1]  R. Mathies,et al.  Orientation of the protonated retinal Schiff base group in bacteriorhodopsin from absorption linear dichroism. , 1989, Biophysical journal.

[2]  M. Sheves,et al.  FTIR evidence of an altered chromophore-protein interaction in the artificial visual pigment cis-5,6-dihydroisorhodopsin and its photoproducts BSI, lumirhodopsin, and metarhodopsin-I , 1991 .

[3]  M. Cornwall,et al.  Evidence for the prolonged photoactivated lifetime of an analogue visual pigment containing 11 -cis 9-desmethylretinal , 1994, Visual Neuroscience.

[4]  S. Morrison,et al.  Structure and Function of Several Anti-Dansyl Chimeric Antibodies Formed by Domain Interchanges between Human IgM and Mouse IgG2b (*) , 1995, The Journal of Biological Chemistry.

[5]  L. Salem,et al.  Conversion of a photon to an electrical signal by sudden polarisation in the N-retinylidene visual chromophore , 1975, Nature.

[6]  R A Mathies,et al.  Vibrationally coherent photochemistry in the femtosecond primary event of vision. , 1994, Science.

[7]  P. Tavan,et al.  Substituents at the c(13) position of retinal and their influence on the function of bacteriorhodopsin. , 1985, Biophysical journal.

[8]  T. Yoshizawa,et al.  Existence of a β-ionone ring-binding site in the rhodopsin molecule , 1975, Nature.

[9]  Y. Fukada,et al.  Comparative study on the chromophore binding sites of rod and red-sensitive cone visual pigments by use of synthetic retinal isomers and analogues. , 1990, Biochemistry.

[10]  T G Ebrey,et al.  RING OXIDIZED RETINALS FORM UNUSUAL BACTERIORHODOPSIN ANALOGUE PIGMENTS * , 1991, Photochemistry and photobiology.

[11]  A. Kropf,et al.  THE MECHANISM OF BLEACHING RHODOPSIN , 1958, Annals of the New York Academy of Sciences.

[12]  J. Berden,et al.  THE INFLUENCE OF THE 5-METHYL GROUP IN BACTERIORHODOPSIN , 1993 .

[13]  K. Nakanishi,et al.  14-Fluorobacteriorhodopsin and other fluorinated and 14-substituted analogues. An extra, unusually red-shifted pigment formed during dark adaptation. , 1990, Biochemistry.

[14]  T G Ebrey,et al.  Wavelength regulation in iodopsin, a cone pigment. , 1989, Biophysical journal.

[15]  R. Crouch,et al.  Opsin pigments formed with acyclic retinal analogues , 1983 .

[16]  Alfred E. Asato,et al.  Azulenic retinoids and the corresponding bacteriorhodopsin analogs. Unusually red-shifted pigments , 1990 .

[17]  J. Spudich,et al.  All-trans/13-cis isomerization of retinal is required for phototaxis signaling by sensory rhodopsins in Halobacterium halobium. , 1990, Biophysical journal.

[18]  E. Hazard,et al.  Probing of the retinal binding site of bacteriorhodopsin by affinity labeling. , 1994, Biochemistry.

[19]  D. Oesterhelt,et al.  α‐retinal as a prosthetic group in bacteriorhodopsin , 1980 .

[20]  K. Nakanishi,et al.  Chapter 7 The stereochemistry of vision , 1982 .

[21]  H. G. Khorana,et al.  Light-stable rhodopsin. I. A rhodopsin analog reconstituted with a nonisomerizable 11-cis retinal derivative. , 1992, The Journal of biological chemistry.

[22]  R. Griffin,et al.  Determination of membrane protein structure by rotational resonance NMR: bacteriorhodopsin. , 1991, Science.

[23]  K. Nakanishi,et al.  Additions and Corrections - Bacteriorhodopsins Containing Cyanine Dye Chromophores. Support for the External Point-Charge Model , 1983 .

[24]  R. Alfano,et al.  Picosecond kinetic absorption and fluorescence studies of bovine rhodopsin with a fixed 11-ene. , 1983, Biophysical journal.

[25]  J. Spudich,et al.  Comparative study of phototactic and photophobic receptor chromophore properties in Chlamydomonas reinhardtii. , 1993, Biophysical journal.

[26]  C. Chang,et al.  Effect of variation of retinal polyene side-chain length on formation and function of bacteriorhodopsin analogue pigments. , 1986, Biochemistry.

[27]  M. Sheves,et al.  Controlling the pKa of the bacteriorhodopsin Schiff base by use of artificial retinal analogues. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[28]  D. Kliger,et al.  Evidence for a common batho intermediate of rhodopsin and isorhodopsin , 1988 .

[29]  T. Yoshizawa,et al.  Interaction of aromatic retinal analogues with apopurple membranes of Halobacterium halobium. , 1984, Biochemistry.

[30]  Koji Nakanishi,et al.  11-cis-retinal, a molecule uniquely suited for vision , 1991 .

[31]  Michael G. Motto,et al.  An external point-charge model for wavelength regulation in visual pigments , 1979 .

[32]  D. Oesterhelt,et al.  Acetylenic retinals form functional bacteriorhodopsins but do not form bovine rhodopsins , 1984 .

[33]  Y. Fukada,et al.  Studies on structure and function of rhodopsin by use of cyclopentatrienylidene 11-cis-locked-rhodopsin. , 1984, Biochemistry.

[34]  Wolfgang Gärtner,et al.  Sterically Fixed Retinal‐Analogue Prevents Proton‐Pumping Activity in Bacteriorhodopsin , 1984 .

[35]  Michael G. Motto,et al.  Hydroretinals and hydrorhodopsins , 1979 .

[36]  M. Sheves,et al.  An artificial visual pigment with restricted carbon-9-carbon-11 motion forms normal photolysis intermediates , 1986 .

[37]  K. Foster,et al.  Light Antennas in phototactic algae. , 1980, Microbiological reviews.

[38]  K. Vogt Is the Fly Visual Pigment a Rhodopsin? , 1983 .

[39]  B. Honig,et al.  Properties of several sterically modified retinal analogs and their photosensitive pigments , 1975 .

[40]  R. Govindjee,et al.  Synthetic pigment analogues of the purple membrane protein. , 1977, Biophysical journal.

[41]  E. Bamberg,et al.  Photocurrents of dark‐adapted bacteriorhodopsin on black lipid membranes , 1982 .

[42]  T. Yoshizawa,et al.  Recognition of opsin to the longitudinal length of retinal isomers in the formation of rhodopsin , 1978, Vision Research.

[43]  K. Nakanishi,et al.  Photoisomerization of retinal at 13-ene is important for phototaxis of Chlamydomonas reinhardtii: simultaneous measurements of phototactic and photophobic responses. , 1991, Biochemical and biophysical research communications.

[44]  P. Hegemann,et al.  All-trans retinal constitutes the functional chromophore in Chlamydomonas rhodopsin. , 1991, Biophysical journal.

[45]  J. Spudich,et al.  Mechanism of activation of sensory rhodopsin I: evidence for a steric trigger. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Anil Kumar Singh,et al.  Synthesis of optically active 3-diazoacetylretinals with triisopropylphenylsulfonylhydrazone , 1988 .

[47]  M. Sheves,et al.  Primary photochemical event in bacteriorhodopsin: study with artificial pigments , 1985 .

[48]  K. Nakanishi,et al.  Mechanism of isomerization of rhodopsin studied by use of 11-cis-locked rhodopsin analogues excited with a picosecond laser pulse. , 1989, Biochemistry.

[49]  M. Karplus,et al.  Theoretical studies of the visual chromophore , 1975 .

[50]  J. Horwitz,et al.  NANOSECOND LASER PHOTOLYSIS OF RHODOPSIN AND ISORHODOPSIN , 1983, Photochemistry and photobiology.

[51]  L. Salem The sudden polarization effect and its possible role in vision , 1979 .

[52]  D. Oesterhelt,et al.  Removal of methyl groups from retinal controls the activity of bacteriorhodopsin , 1983 .

[53]  Y. Fukada,et al.  What makes red visual pigments red? A resonance Raman microprobe study of retinal chromophore structure in iodopsin. , 1994, Biochemistry.

[54]  M. Groesbeek,et al.  SYNTHESIS OF DOUBLY AND MULTIPLY ISOTOPICALLY LABELED RETINALS , 1992 .

[55]  M. Sheves,et al.  Interactions of the beta-ionone ring with the protein in the visual pigment rhodopsin control the activation mechanism. An FTIR and fluorescence study on artificial vertebrate rhodopsins. , 1994, Biochemistry.

[56]  K. Nakanishi,et al.  Activation of Chlamydomonas rhodopsin in vivo does not require isomerization of retinal. , 1989, Biochemistry.

[57]  M. Sheves,et al.  A mechanism for controlling the pKa of the retinal protonated Schiff base in retinal proteins. A study with model compounds , 1993 .

[58]  B Honig,et al.  Chromophore/protein interaction in bacterial sensory rhodopsin and bacteriorhodopsin. , 1986, Biophysical journal.

[59]  H. Khorana,et al.  Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[60]  E. MacNichol,et al.  Noncovalent occupancy of the retinal-binding pocket of opsin diminishes bleaching adaptation of retinal cones , 1993, Neuron.

[61]  K. Nakanishi,et al.  Isorhodopsin II: artificial photosensitive pigment formed from 9,13-dicis retinal. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[62]  D. Oesterhelt,et al.  Photocycles of bacteriorhodopsins containing 13-alkyl-substituted retinals , 1988 .

[63]  T. Mirzadegan,et al.  Isomers, visual pigment, and bacteriorhodopsin analogs of 3,7,13-trimethyl-10-isopropyl-2,4,6,8,10-tetradecapentaenal and 3,7,11-trimethyl-10-isopropyl-2,4,6,8,10-dodecapentaenal (two ring open retinal analogs) , 1989 .

[64]  Y. Koutalos,et al.  Octopus photoreceptor membranes. Surface charge density and pK of the Schiff base of the pigments. , 1990, Biophysical journal.

[65]  R. Rando,et al.  Biochemical properties of 9-cis- and all-trans-retinoylopsins. , 1985, Biochemistry.

[66]  D. Oesterhelt,et al.  Studies on the retinal-protein interaction in bacteriorhodopsin. , 1977, European journal of biochemistry.

[67]  J. Spudich,et al.  Retinal analog restoration of photophobic responses in a blind Chlamydomonas reinhardtii mutant. Evidence for an archaebacterial like chromophore in a eukaryotic rhodopsin. , 1991, Biophysical journal.

[68]  Gebhard F. X. Schertler,et al.  Projection structure of rhodopsin , 1993, Nature.

[69]  H. Trissl,et al.  Rapid charge separation and bathochromic absorption shift of flash-excited bacteriorhodopsins containing 13-Cis or all-trans forms of substituted retinals , 1987 .

[70]  M. Sheves,et al.  Photolysis intermediates of the artificial visual pigment cis-5,6-dihydro-isorhodopsin. , 1989, Biophysical journal.

[71]  Y. Koutalos High-pH form of bovine rhodopsin. , 1992, Biophysical journal.

[72]  Y. Fukada,et al.  Structure of the retinal chromophore in 7,9-dicis-rhodopsin. , 1990, Biochemistry.

[73]  K. Nakanishi,et al.  Rhodopsins containing 6- to 9-membered rings. The triggering process of visual transduction , 1994 .

[74]  A. Kini,et al.  Seven new hindered isomeric rhodopsins: A reexamination of the stereospecificity of the binding site of bovine opsin , 1984 .

[75]  Masakatsu Watanabe,et al.  Diversion of the sign of phototaxis in a Chlamydomonas reinhardtii mutant incorporated with retinal and its analogs , 1992, FEBS letters.

[76]  T. Yoshizawa,et al.  A novel rhodopsin analogue possessing the conformationally 6-s-cis-fixed retinylidene chromophore , 1985 .

[77]  K. Hiraki,et al.  4-Hydroxyretinal, a new visual pigment chromophore found in the bioluminescent squid, Watasenia scintillans. , 1988, Biochimica et biophysica acta.

[78]  K. Nakanishi,et al.  A nonbleachable rhodopsin analogue formed from 11, 12-dihydroretinal. , 1977, Journal of the American Chemical Society.

[79]  J. Baldwin The probable arrangement of the helices in G protein‐coupled receptors. , 1993, The EMBO journal.

[80]  Arieh Warshel,et al.  Bicycle-pedal model for the first step in the vision process , 1976, Nature.

[81]  Anil Kumar Singh,et al.  PHOTOAFFINITY LABELING OF BOVINE RHODOPSIN , 1984 .

[82]  R. Crouch,et al.  PROPERTIES OF SYNTHETIC BACTERIORHODOPSIN PIGMENTS. FURTHER PROBES OF THE CHROMOPHORE BINDING SITE , 1986, Photochemistry and photobiology.

[83]  K. Nakanishi,et al.  5-(Trifluoromethyl)bacteriorhodopsin does not translocate protons. , 1986, Journal of the American Chemical Society.

[84]  M. Sheves,et al.  Picosecond time-resolved absorption and fluorescence dynamics in the artificial bacteriorhodopsin pigment BR6.11. , 1993, Biophysical journal.

[85]  M. Sheves,et al.  pKa of the protonated Schiff base of bovine rhodopsin. A study with artificial pigments. , 1993, Biophysical journal.

[86]  F. Daemen,et al.  The chromophore binding space of opsin , 1978, Nature.

[87]  R. Crouch,et al.  AZIDOTETRAFLUOROPHENYL RETINAL ANALOGUE: SYNTHESIS AND BACTERIORHODOPSIN PIGMENT FORMATION , 1994, Photochemistry and photobiology.

[88]  Barry Honig,et al.  An external point-charge model for bacteriorhodopsin to account for its purple color , 1980 .

[89]  T. Yoshizawa,et al.  Absorption spectrum of cattle hypsorhodopsin , 1983 .

[90]  R. Crouch,et al.  Analogue pigment studies of chromophore-protein interactions in metarhodopsins. , 1989, Biochemistry.

[91]  T. Ono,et al.  Electrostatic interaction between retinylidene chromophore and opsin in rhodopsin studied by fluorinated rhodopsin analogues. , 1987, Biochemistry.

[92]  J. Saranak,et al.  The in vivo cleavage of carotenoids into retinoids in Chlamydomonas reinhardtii , 1994 .

[93]  N. Kamo,et al.  SHAPE OF THE CHROMOPHOIW BINDING SITE IN pharaonis PHOBORHODOPSIN FROM A STUDY USING RETINAL ANALOGS , 1994, Photochemistry and photobiology.

[94]  G. Fain,et al.  Bleached pigment activates transduction in salamander cones , 1995, The Journal of general physiology.

[95]  K. Nakanishi,et al.  Photoisomerization mechanism of the rhodopsin chromophore: picosecond photolysis of pigment containing 11-cis-locked eight-membered ring retinal. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[96]  K. Nakanishi,et al.  Theory of rhodopsin activation: probable charge redistribution of excited state chromophore , 1989 .

[97]  R. Crouch,et al.  ISOMERS OF 3,7,11‐TRIMETHYLDODECA‐2,4,6,8,10‐ PENTAENAL (A LINEAR ANALOGUE OF RETINAL) and LOWER HOMOLOGUES IN THEIR INTERACTION WITH BOVINE OPSIN and BACTERIOOPSIN , 1985, Photochemistry and photobiology.

[98]  R. Govindjee,et al.  A bacteriorhodopsin analog containing the retinal nitroxide free radical , 1981 .

[99]  M. Sheves,et al.  A NEW PHOTOLYSIS INTERMEDIATE IN ARTIFICIAL AND NATIVE VISUAL PIGMENTS , 1991 .

[100]  R. Mathies,et al.  Femtosecond dynamics of cis-trans isomerization in a visual pigment analog. Isorhodopsin , 1993 .

[101]  S. Grzesiek,et al.  Transmembrane location of retinal in bacteriorhodopsin by neutron diffraction. , 1990, Biochemistry.

[102]  L. P. Murray,et al.  Two-photon spectroscopy of locked-11-cis-rhodopsin: evidence for a protonated Schiff base in a neutral protein binding site. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[103]  N. Mangini,et al.  Reduced Light-dependent Phosphorylation of an Analog Visual Pigment Containing 9-Demethylretinal as Its Chromophore (*) , 1995, The Journal of Biological Chemistry.

[104]  C. Chang,et al.  Trans/13-cis isomerization is essential for both the photocycle and proton pumping of bacteriorhodopsin. , 1985, Biophysical journal.

[105]  D. Oprian,et al.  Constitutively active mutants of rhodopsin , 1992, Neuron.

[106]  K. Palczewski,et al.  Rod outer segment retinol dehydrogenase: substrate specificity and role in phototransduction. , 1994, Biochemistry.

[107]  M. Sheves,et al.  LOW‐TEMPERATURE TRAPPING OF EARLY PHOTOINTERMEDIATES OF α‐ISORHODOPSIN , 1995 .

[108]  D. Oesterhelt,et al.  Methoxyretinals in bacteriorhodopsin. Absorption maxima, cis-trans isomerization and retinal protein interaction. , 1988, European journal of biochemistry.

[109]  T. Grover,et al.  A SPIN LABELED RETINAL PIGMENT ANALOGUE OF THE PURPLE MEMBRANE , 1981 .

[110]  M. Sheves,et al.  ISOMER COMPOSITION and SPECTRA OF THE DARK and LIGHT ADAPTED FORMS OF ARTIFICIAL BACTERIORHODOPSINS * , 1991 .

[111]  R. Rando,et al.  Removal of the 9-methyl group of retinal inhibits signal transduction in the visual process. A Fourier transform infrared and biochemical investigation. , 1989, Biochemistry.

[112]  M. Groesbeek,et al.  10,20-Methanorhodopsins: (7E,9E,13E)-10,20-methanorhodopsin and (7E,9Z,13Z)-10,20-methanorhodopsin. 11-cis-locked rhodopsin analog pigments with unusual thermal and photo-stability. , 1990, European journal of biochemistry.

[113]  R. Crouch,et al.  Inhibition of rhodopsin regeneration by cyclohexyl derivatives , 1982, Vision Research.

[114]  S. Goff,et al.  The spectral properties of some visual pigment analogs. , 1973, Experimental eye research.

[115]  Y. Inoue,et al.  Ab initio study of the 13C NMR chemical shifts for some polyene compounds as models for the chromophore of rhodopsin , 1992 .

[116]  H. Khorana,et al.  Orientation of retinal in bovine rhodopsin determined by cross-linking using a photoactivatable analog of 11-cis-retinal. , 1990, The Journal of biological chemistry.

[117]  K. Nakanishi,et al.  Retinoids and Related Compounds. Part 16. Synthesis of (+)-(4S)- and (-)-(4R)-(11Z)-4-Hydroxyretinals and Determination of the Absolute Stereochemistry of a Visual Pigment Chromophore in the Firefly Squid, Watasenia scintillans , 1994 .

[118]  D. Oesterhelt,et al.  Regeneration of rhodopsin and bacteriorhodopsin. The role of retinal analogues as inhibitors. , 1981, European journal of biochemistry.

[119]  D. Wong,et al.  ANALYZING THE RED‐SHIFT CHARACTERISTICS OF AZULENIC, NAPHTHYL, OTHER RING‐FUSED AND RETINYL PIGMENT ANALOGS OF BACTERIORHODOPSIN * , 1993, Photochemistry and photobiology.

[120]  J. West,et al.  Light activation of bovine rod phosphodiesterase by non‐physiological visual pigments , 1980, FEBS letters.

[121]  R. Mathies,et al.  Synthesis and vibrational analysis of a locked 14-s-cis conformer of retinal , 1992 .

[122]  K. Yoshihara,et al.  Differences in the photobleaching process between 7-cis- and 11-cis-rhodopsins: a unique interaction change between the chromophore and the protein during the lumi-meta I transition. , 1991, Biochemistry.

[123]  J. Spudich,et al.  Identification of signaling states of a sensory receptor by modulation of lifetimes of stimulus-induced conformations: the case of sensory rhodopsin II. , 1991, Biochemistry.

[124]  D. Kliger,et al.  Early photolysis intermediates of the artificial visual pigment 13-demethylrhodopsin. , 1990, Biochemistry.

[125]  K. Nakanishi,et al.  VISUAL PIGMENTS AND BACTERIORHODOPSINS FORMED FROM AROMATIC RETINAL ANALOGS , 1984, Photochemistry and photobiology.

[126]  R. Callender,et al.  Neither the retinal ring nor the ring double bond is required for proton pumping in bacteriorhodopsin: acyclic retinal bacterioopsin analogues , 1984 .

[127]  R. Griffin,et al.  Rotational resonance NMR study of the active site structure in bacteriorhodopsin: conformation of the Schiff base linkage. , 1992, Biochemistry.

[128]  R. Crouch,et al.  PURPLE MEMBRANE ANALOGS SYNTHESIZED FROM C17 ALDEHYDE , 1981 .

[129]  T. Yoshizawa The Behaviour of Visual Pigments at Low Temperatures , 1972 .

[130]  E. MacNichol,et al.  Transduction noise induced by 4-hydroxy retinals in rod photoreceptors. , 1990, Biophysical journal.

[131]  P. Towner,et al.  INVERTEBRATE VISUAL PIGMENTS , 1995, Photochemistry and photobiology.

[132]  K. Dam,et al.  (5‐demethyl)‐Bacteriorhodopsin analogue: its formation and light‐driven proton pump action , 1983 .

[133]  E. MacNichol,et al.  Relief of opsin desensitization and prolonged excitation of rod photoreceptors by 9-desmethylretinal. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[134]  V. Ramamurthy,et al.  Rhodopsin analogues from highly hindered 7-cis isomers of retinal , 1976, Nature.

[135]  R. Alfano,et al.  The primary event in vision investigated by time-resolved fluorescence spectroscopy. , 1985, Biophysical journal.

[136]  Y. Zhu,et al.  Divergent pathways in photobleaching of 7,9-dicis-rhodopsin and 9,11-dicis-12-fluororhodopsin: one-photon-two-bond and one-photon-one-bond isomerization. , 1993, Biochemistry.

[137]  J. Lisman,et al.  Photoreceptor degeneration in vitamin A deprivation and retinitis pigmentosa: the equivalent light hypothesis. , 1993, Experimental eye research.

[138]  Minoru Sakurai,et al.  Ab Initio Study of 13C NMR Chemical Shifts for the Chromophores of Rhodopsin and Bacteriorhodopsin. 1. Theoretical Estimation of Their Ring-Chain Conformations , 1994 .

[139]  D. Oesterhelt,et al.  Regulation of the 6‐s Equilibrium Conformation of Retinal in Bacteriorhodopsin by Substitution at C‐5; 5‐Methoxy‐ and 5‐Ethylretinalbacteriorhodopsin , 1987 .

[140]  M. Takao,et al.  Properties of an Analogue Pigment of Bacteriorhodopsin Synthesized with Naphthylretinal , 1984 .

[141]  R. Mathies,et al.  The first step in vision occurs in femtoseconds: complete blue and red spectral studies. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[142]  K. Nakanishi,et al.  INCORPORATION OF 11,12‐DIHYDRORETINAL INTO THE RETINAE OF VITAMIN A DEPRIVED RATS , 1981, Photochemistry and photobiology.

[143]  Y. Koutalos,et al.  Regeneration of bovine and octopus opsins in situ with natural and artificial retinals. , 1989, Biochemistry.

[144]  M. Sheves,et al.  STRUCTURAL CHANGES IN EARLY PHOTOLYSIS INTERMEDIATES OF RHODOPSIN FROM TIME-RESOLVED SPECTRAL MEASUREMENTS OF ARTIFICIAL PIGMENTS STERICALLY HINDERED ALONG THE CHROMOPHORE CHAIN , 1995 .

[145]  13-(Trifluoromethyl)retinal forms an active and far-red-shifted chromophore in bacteriorhodopsin , 1981 .

[146]  B. Honig,et al.  Letter: Properties of 14-methylretinal, 13-desmethyl-14-methylretinal, and visual pigments formed therefrom. , 1974, Journal of the American Chemical Society.

[147]  M. Sheves,et al.  The pKa of the protonated Schiff bases of gecko cone and octopus visual pigments. , 1994, Biophysical journal.

[148]  D. Oesterhelt,et al.  Optical picosecond studies of bacteriorhodopsin containing a sterically fixed retinal , 1984 .

[149]  J. Spudich,et al.  Color regulation in the archaebacterial phototaxis receptor phoborhodopsin (sensory rhodopsin II). , 1990, Biochemistry.

[150]  J. Spudich,et al.  Effects of modifications of the retinal beta-ionone ring on archaebacterial sensory rhodopsin I. , 1990, Biophysical journal.

[151]  K. Nakamura,et al.  9,13-dicis-rhodopsin and its one-photon-one-double-bond isomerization. , 1988, Biochemistry.

[152]  H. Kandori,et al.  Spectroscopic study of the batho-to-lumi transition during the photobleaching of rhodopsin using ring-modified retinal analogues. , 1991, Biochemistry.

[153]  A. Watts,et al.  Structure determination of the cyclohexene ring of retinal in bacteriorhodopsin by solid-state deuterium NMR. , 1992, Biochemistry.

[154]  Jureepan Saranak,et al.  A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas , 1984, Nature.

[155]  D. Oesterhelt,et al.  Reconstitution of a proton pump. , 1976, Biochemical Society transactions.

[156]  M. Groesbeek,et al.  STRUCTURE OF HYPSORHODOPSIN: ANALYSIS BY FOURIER TRANSFORM INFRARED SPECTROSCOPY AT 10 K , 1992 .