$l_1$-based sparsification of energy interactions in two-dimensional turbulent flows

In this paper, sparsity-promoting regression techniques are employed to automatically identify from data relevant triadic interactions between modal structures in large Galerkin-based models of two-dimensional unsteady flows. The approach produces interpretable, sparsely-connected models that reproduce the original dynamical behaviour at a much lower computational cost, as fewer triadic interactions need to be evaluated. The key feature of the approach is that dominant interactions are selected systematically from the solution of a convex optimisation problem, with a unique solution, and no a priori assumptions on the structure of scale interactions are required. We demonstrate this approach on models of two-dimensional lid-driven cavity flow at Reynolds number $Re = 2 \times 10^4$, where fluid motion is chaotic. To understand the role of the subspace utilised for the Galerkin projection on sparsity characteristics, we consider two families of models obtained from two different modal decomposition techniques. The first uses energy-optimal Proper Orthogonal Decomposition modes, while the second uses modes oscillating at a single frequency obtained from Discrete Fourier Transform of the flow snapshots. We show that, in both cases, and despite no \textit{a-priori} physical knowledge is incorporated into the approach, relevant interactions across the hierarchy of modes are identified in agreement with the expected picture of scale interactions in two-dimensional turbulence. Yet, substantial structural changes in the interaction pattern and a quantitatively different sparsity are observed. Finally, although not directly enforced in the procedure, the sparsified models have excellent long-term stability properties and correctly reproduce the spatio-temporal evolution of dominant flow structures in the cavity.

[1]  Peter J. Schmid,et al.  Recursive dynamic mode decomposition of transient and post-transient wake flows , 2016, Journal of Fluid Mechanics.

[2]  Kunihiko Taira,et al.  Network-theoretic approach to sparsified discrete vortex dynamics , 2015, Journal of Fluid Mechanics.

[3]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[4]  Cyrus K. Aidun,et al.  A direct method for computation of simple bifurcations , 1995 .

[5]  Trevor Hastie,et al.  Statistical Learning with Sparsity: The Lasso and Generalizations , 2015 .

[6]  Joel Delville,et al.  Polynomial identification of POD based low-order dynamical system , 2006 .

[7]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[8]  L. Sirovich Turbulence and the dynamics of coherent structures. II. Symmetries and transformations , 1987 .

[9]  Peter J. Schmid,et al.  Sparsity-promoting dynamic mode decomposition , 2012, 1309.4165.

[10]  Jitesh S. B. Gajjar,et al.  Global flow instability in a lid‐driven cavity , 2009 .

[11]  Dennice F. Gayme,et al.  Self-sustaining turbulence in a restricted nonlinear model of plane Couette flow , 2013, 1402.5059.

[13]  P. Schmid,et al.  Low-rank and sparse dynamic mode decomposition , 2012 .

[14]  David J C Dennis,et al.  Coherent structures in wall-bounded turbulence. , 2015, Anais da Academia Brasileira de Ciencias.

[15]  Steven L. Brunton,et al.  Constrained sparse Galerkin regression , 2016, Journal of Fluid Mechanics.

[16]  J.-M. Buchlin,et al.  Multi-scale proper orthogonal decomposition of complex fluid flows , 2018, Journal of Fluid Mechanics.

[17]  Traian Iliescu,et al.  Data-Driven Filtered Reduced Order Modeling of Fluid Flows , 2017, SIAM J. Sci. Comput..

[18]  B. R. Noack,et al.  A Finite-Time Thermodynamics of Unsteady Fluid Flows , 2008 .

[19]  Nonlocality in a forced two‐dimensional turbulence , 1990 .

[20]  R. Kraichnan Inertial-range transfer in two- and three-dimensional turbulence , 1971, Journal of Fluid Mechanics.

[21]  E. Erturk,et al.  Numerical solutions of 2‐D steady incompressible driven cavity flow at high Reynolds numbers , 2004, ArXiv.

[22]  Clarence W. Rowley,et al.  Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses , 2012, J. Nonlinear Sci..

[23]  Linan Zhang,et al.  On the Convergence of the SINDy Algorithm , 2018, Multiscale Model. Simul..

[24]  Hod Lipson,et al.  Distilling Free-Form Natural Laws from Experimental Data , 2009, Science.

[25]  Bernd R. Noack,et al.  A global stability analysis of the steady and periodic cylinder wake , 1994, Journal of Fluid Mechanics.

[26]  Dennice F. Gayme,et al.  A minimal model of self-sustaining turbulence , 2015, 1501.02369.

[27]  B. R. Noack,et al.  On long-term boundedness of Galerkin models , 2013, Journal of Fluid Mechanics.

[28]  Hermann F. Fasel,et al.  Dynamics of three-dimensional coherent structures in a flat-plate boundary layer , 1994, Journal of Fluid Mechanics.

[29]  R. Tibshirani The Lasso Problem and Uniqueness , 2012, 1206.0313.

[30]  S. Brunton,et al.  Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.

[31]  Eusebio Valero,et al.  Local POD Plus Galerkin Projection in the Unsteady Lid-Driven Cavity Problem , 2011, SIAM J. Sci. Comput..

[32]  E Kaiser,et al.  Sparse identification of nonlinear dynamics for model predictive control in the low-data limit , 2017, Proceedings of the Royal Society A.

[33]  Laurent Cordier,et al.  Calibration of POD reduced‐order models using Tikhonov regularization , 2009 .

[34]  B. Dubrulle,et al.  Nonlocality of interaction of scales in the dynamics of 2D incompressible fluids , 1999 .

[35]  P. Sagaut,et al.  Calibrated reduced-order POD-Galerkin system for fluid flow modelling , 2005 .

[36]  Gilead Tadmor,et al.  Reduced-Order Modelling for Flow Control , 2013 .

[37]  Hassan Arbabi,et al.  Study of dynamics in post-transient flows using Koopman mode decomposition , 2017, 1704.00813.

[38]  Petros Koumoutsakos,et al.  Machine Learning for Fluid Mechanics , 2019, Annual Review of Fluid Mechanics.

[39]  Earl H. Dowell,et al.  Low-dimensional modelling of high-Reynolds-number shear flows incorporating constraints from the Navier–Stokes equation , 2013, Journal of Fluid Mechanics.

[40]  Bernd R. Noack,et al.  The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows , 2005, Journal of Fluid Mechanics.

[41]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[42]  Vassilios Theofilis,et al.  Modal Analysis of Fluid Flows: An Overview , 2017, 1702.01453.

[43]  John L. Lumley,et al.  Computational Modeling of Turbulent Flows , 1978 .

[44]  J. Lumley Stochastic tools in turbulence , 1970 .

[45]  O. Botella,et al.  BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .

[46]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[47]  T. Colonius,et al.  Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis , 2017, Journal of Fluid Mechanics.

[48]  Pat Langley,et al.  Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..

[49]  Scott T. M. Dawson,et al.  Model Reduction for Flow Analysis and Control , 2017 .

[50]  Nicola Parolini,et al.  Numerical investigation on the stability of singular driven cavity flow , 2002 .

[51]  Vladik Kreinovich,et al.  Why l1 Is a Good Approximation to l0: A Geometric Explanation , 2013 .

[52]  James G. Brasseur,et al.  Dynamics of direct large-small scale couplings in coherently forced turbulence: concurrent physical- and Fourier-space views , 1995, Journal of Fluid Mechanics.

[53]  I. Mezić,et al.  Analysis of Fluid Flows via Spectral Properties of the Koopman Operator , 2013 .

[54]  Arthur Veldman,et al.  Proper orthogonal decomposition and low-dimensional models for driven cavity flows , 1998 .

[55]  Kunihiko Taira,et al.  Networked-oscillator-based modeling and control of unsteady wake flows. , 2017, Physical review. E.

[56]  Pierre Sagaut,et al.  Intermodal energy transfers in a proper orthogonal decomposition–Galerkin representation of a turbulent separated flow , 2003, Journal of Fluid Mechanics.

[57]  Anthony T. Patera,et al.  A stabilized POD model for turbulent flows over a range of Reynolds numbers: Optimal parameter sampling and constrained projection , 2018, J. Comput. Phys..

[58]  Yih-Ferng Peng,et al.  Transition in a 2-D lid-driven cavity flow , 2003 .

[59]  Christian Oliver Paschereit,et al.  Spectral proper orthogonal decomposition , 2015, Journal of Fluid Mechanics.

[60]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[61]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[62]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[63]  J. Brasseur,et al.  Interscale dynamics and local isotropy in high Reynolds number turbulence within triadic interactions , 1994 .

[64]  Steven L. Brunton,et al.  Network structure of two-dimensional decaying isotropic turbulence , 2016, Journal of Fluid Mechanics.

[65]  E. Todeva Networks , 2007 .