Freezing transitions and extreme values: random matrix theory, and disordered landscapes

We argue that the freezing transition scenario, previously conjectured to occur in the statistical mechanics of 1/f-noise random energy models, governs, after reinterpretation, the value distribution of the maximum of the modulus of the characteristic polynomials pN(θ) of large N×N random unitary (circular unitary ensemble) matrices UN; i.e. the extreme value statistics of pN(θ) when . In addition, we argue that it leads to multi-fractal-like behaviour in the total length μN(x) of the intervals in which |pN(θ)|>Nx,x>0, in the same limit. We speculate that our results extend to the large values taken by the Riemann zeta function ζ(s) over stretches of the critical line of given constant length and present the results of numerical computations of the large values of ). Our main purpose is to draw attention to the unexpected connections between these different extreme value problems.

[1]  J. Keating Quantum chaology and the Riemann zeta-function , 1993 .

[2]  Ghaith A. Hiary,et al.  An amortized-complexity method to compute the Riemann zeta function , 2010, Math. Comput..

[3]  E. Saksman,et al.  Random Curves by Conformal Welding , 2009, 0912.3423.

[4]  Antanas Laurinčikas,et al.  Limit Theorems for the Riemann Zeta-Function , 1995 .

[5]  S. Ole Warnaar,et al.  The importance of the Selberg integral , 2007, 0710.3981.

[6]  N. Snaith,et al.  Lower order terms in the full moment conjecture for the Riemann zeta function , 2006, math/0612843.

[7]  Olivier Zindy,et al.  POISSON-DIRICHLET STATISTICS FOR THE EXTREMES OF A LOG-CORRELATED GAUSSIAN FIELD , 2012, 1203.4216.

[8]  A. Bovier,et al.  Statistical Mechanics of Disordered Systems , 2006 .

[9]  J. P. Keating,et al.  Autocorrelation of Random Matrix Polynomials , 2002, math-ph/0208007.

[10]  E. Saksman,et al.  Critical Mandelbrot Cascades , 2012, 1206.5444.

[11]  J. Bouchaud Weak ergodicity breaking and aging in disordered systems , 1992 .

[12]  D. Carpentier,et al.  Glass transition of a particle in a random potential, front selection in nonlinear renormalization group, and entropic phenomena in Liouville and sinh-Gordon models. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  E. Bolthausen,et al.  Entropic repulsion and the maximum of the two-dimensional harmonic crystal , 2001 .

[14]  S. Majumdar,et al.  Exact maximal height distribution of fluctuating interfaces. , 2004, Physical review letters.

[15]  Sarah Rothstein The Cosmic Landscape String Theory And The Illusion Of Intelligent Design , 2016 .

[16]  M. Mézard,et al.  Universality classes for extreme value statistics , 1997, cond-mat/9707047.

[17]  J. Bouchaud,et al.  Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential , 2008, 0805.0407.

[18]  Y. Neretin Some remarks on stable densities and operators of fractional differentiation , 2004, math/0404558.

[19]  E. W. Barnes The Theory of the Double Gamma Function , .

[20]  Mudry,et al.  Localization in Two Dimensions, Gaussian Field Theories, and Multifractality. , 1996, Physical review letters.

[21]  Maury Bramson,et al.  Tightness of the recentered maximum of the two‐dimensional discrete Gaussian free field , 2010, 1009.3443.

[22]  D. R. Heath-Brown,et al.  The Theory of the Riemann Zeta-Function , 1987 .

[23]  J. Kahane Sur le chaos multiplicatif , 1985 .

[24]  Neil O'Connell,et al.  On the Characteristic Polynomial¶ of a Random Unitary Matrix , 2001 .

[25]  Hugh Montgomery The maximum size of L-functions , 2005, math/0506218.

[26]  B. M. Fulk MATH , 1992 .

[27]  E. Bacry,et al.  Log-Infinitely Divisible Multifractal Processes , 2002, cond-mat/0207094.

[28]  J. Keating,et al.  A hybrid Euler-Hadamard product for the Riemann zeta function , 2007 .

[29]  T. H. Baker,et al.  Finite-N fluctuation formulas for random matrices , 1997 .

[30]  I. Gel'fand,et al.  REPRESENTATIONS OF THE GROUP SL(2, R), WHERE R IS A RING OF FUNCTIONS , 1973 .

[31]  M. R. Leadbetter,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[32]  J. Keating The Riemann Zeta-Function and Quantum Chaology , 1993 .

[33]  The Feynman Path Integral: An Historical Slice , 2003, quant-ph/0303034.

[34]  On the Remainder in the Formula for N(T), the Number of Zeros of ζ(s) in the Strip 0 , 1928 .

[35]  B. Derrida,et al.  Polymers on disordered trees, spin glasses, and traveling waves , 1988 .

[36]  Vorrapan Chandee On the correlation of shifted values of the Riemann zeta function , 2009, 0910.0664.

[37]  G. Biroli,et al.  Extreme value problems in random matrix theory and other disordered systems , 2007, cond-mat/0702244.

[38]  D. Ostrovsky Mellin Transform of the Limit Lognormal Distribution , 2009 .

[39]  B. Derrida Random-energy model: An exactly solvable model of disordered systems , 1981 .

[40]  D. R. Heath-Brown Prime number theory and the Riemann Zeta-function , 2005 .

[41]  P. Bourgade Mesoscopic fluctuations of the zeta zeros , 2009, 0902.1757.

[42]  Alberto Rosso,et al.  Freezing transition in decaying Burgers turbulence and random matrix dualities , 2010, 1004.5025.

[43]  V. Dotsenko Universal randomness , 2010, 1009.3116.

[44]  Edoardo Milotti,et al.  1/f noise: a pedagogical review , 2002, physics/0204033.

[45]  Ivan Corwin The Kardar-Parisi-Zhang equation and universality class , 2011, 1106.1596.

[46]  S. Majumdar,et al.  Exact distributions of the number of distinct and common sites visited by N independent random walkers. , 2013, Physical review letters.

[47]  H. Kösters On the occurrence of the sine kernel in connection with the shifted moments of the Riemann zeta function , 2008, 0803.1141.

[48]  B. Derrida A generalization of the Random Energy Model which includes correlations between energies , 1985 .

[49]  P. Forrester Asymptotics of spacing distributions at the hard edge for $\beta$-ensembles , 2012, 1208.2388.

[50]  S. Sheffield Gaussian free fields for mathematicians , 2003, math/0312099.

[51]  E. Saksman,et al.  Random conformal weldings , 2009, 0909.1003.

[52]  Y. Fyodorov,et al.  Freezing transition, characteristic polynomials of random matrices, and the Riemann zeta function. , 2012, Physical review letters.

[53]  N. Snaith,et al.  Random Matrix Theory and ζ(1/2+it) , 2000 .

[54]  H. Widom Toeplitz Determinants with Singular Generating Functions , 1973 .

[55]  Scott Sheffield,et al.  Critical Gaussian multiplicative chaos: Convergence of the derivative martingale , 2012, 1206.1671.

[56]  T. Antal,et al.  1/f noise and extreme value statistics. , 2001, Physical review letters.

[57]  Y. Fyodorov,et al.  Statistical mechanics of logarithmic REM: duality, freezing and extreme value statistics of 1/f noises generated by Gaussian free fields , 2009, 0907.2359.

[58]  P. Diaconis,et al.  On the eigenvalues of random matrices , 1994, Journal of Applied Probability.

[59]  Maury Bramson,et al.  Convergence in Law of the Maximum of the Two‐Dimensional Discrete Gaussian Free Field , 2013, 1301.6669.

[60]  D. Ostrovsky Selberg Integral as a Meromorphic Function , 2013 .

[61]  Leonard Susskind,et al.  The Cosmic Landscape: String Theory and the Illusion of Intelligent Design , 2005 .

[62]  Julius Jellinek,et al.  Energy Landscapes: With Applications to Clusters, Biomolecules and Glasses , 2005 .

[63]  THE KARDAR-PARISI-ZHANG,et al.  The Kardar-Parisi-Zhang Equation and Universality Class , 2011 .

[64]  Y. Fyodorov Multifractality and freezing phenomena in random energy landscapes: An introduction , 2009, 0911.2765.

[65]  Michael E. Fisher,et al.  Toeplitz Determinants: Some Applications, Theorems, and Conjectures , 2007 .

[66]  Giorgio Parisi The Mean Field Theory of Spin Glasses: The Heuristic Replica Approach and Recent Rigorous Results , 2010 .

[67]  J. P. Keating,et al.  Integral Moments of L‐Functions , 2002, math/0206018.

[68]  Olivier Daviaud Extremes of the discrete two-dimensional Gaussian free field , 2004, math/0406609.

[69]  Y. Fyodorov,et al.  Counting Function Fluctuations and Extreme Value Threshold in Multifractal Patterns: The Case Study of an Ideal 1/f Noise , 2012, 1207.4614.