Freezing transitions and extreme values: random matrix theory, and disordered landscapes
暂无分享,去创建一个
[1] J. Keating. Quantum chaology and the Riemann zeta-function , 1993 .
[2] Ghaith A. Hiary,et al. An amortized-complexity method to compute the Riemann zeta function , 2010, Math. Comput..
[3] E. Saksman,et al. Random Curves by Conformal Welding , 2009, 0912.3423.
[4] Antanas Laurinčikas,et al. Limit Theorems for the Riemann Zeta-Function , 1995 .
[5] S. Ole Warnaar,et al. The importance of the Selberg integral , 2007, 0710.3981.
[6] N. Snaith,et al. Lower order terms in the full moment conjecture for the Riemann zeta function , 2006, math/0612843.
[7] Olivier Zindy,et al. POISSON-DIRICHLET STATISTICS FOR THE EXTREMES OF A LOG-CORRELATED GAUSSIAN FIELD , 2012, 1203.4216.
[8] A. Bovier,et al. Statistical Mechanics of Disordered Systems , 2006 .
[9] J. P. Keating,et al. Autocorrelation of Random Matrix Polynomials , 2002, math-ph/0208007.
[10] E. Saksman,et al. Critical Mandelbrot Cascades , 2012, 1206.5444.
[11] J. Bouchaud. Weak ergodicity breaking and aging in disordered systems , 1992 .
[12] D. Carpentier,et al. Glass transition of a particle in a random potential, front selection in nonlinear renormalization group, and entropic phenomena in Liouville and sinh-Gordon models. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[13] E. Bolthausen,et al. Entropic repulsion and the maximum of the two-dimensional harmonic crystal , 2001 .
[14] S. Majumdar,et al. Exact maximal height distribution of fluctuating interfaces. , 2004, Physical review letters.
[15] Sarah Rothstein. The Cosmic Landscape String Theory And The Illusion Of Intelligent Design , 2016 .
[16] M. Mézard,et al. Universality classes for extreme value statistics , 1997, cond-mat/9707047.
[17] J. Bouchaud,et al. Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential , 2008, 0805.0407.
[18] Y. Neretin. Some remarks on stable densities and operators of fractional differentiation , 2004, math/0404558.
[19] E. W. Barnes. The Theory of the Double Gamma Function , .
[20] Mudry,et al. Localization in Two Dimensions, Gaussian Field Theories, and Multifractality. , 1996, Physical review letters.
[21] Maury Bramson,et al. Tightness of the recentered maximum of the two‐dimensional discrete Gaussian free field , 2010, 1009.3443.
[22] D. R. Heath-Brown,et al. The Theory of the Riemann Zeta-Function , 1987 .
[23] J. Kahane. Sur le chaos multiplicatif , 1985 .
[24] Neil O'Connell,et al. On the Characteristic Polynomial¶ of a Random Unitary Matrix , 2001 .
[25] Hugh Montgomery. The maximum size of L-functions , 2005, math/0506218.
[26] B. M. Fulk. MATH , 1992 .
[27] E. Bacry,et al. Log-Infinitely Divisible Multifractal Processes , 2002, cond-mat/0207094.
[28] J. Keating,et al. A hybrid Euler-Hadamard product for the Riemann zeta function , 2007 .
[29] T. H. Baker,et al. Finite-N fluctuation formulas for random matrices , 1997 .
[30] I. Gel'fand,et al. REPRESENTATIONS OF THE GROUP SL(2, R), WHERE R IS A RING OF FUNCTIONS , 1973 .
[31] M. R. Leadbetter,et al. Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .
[32] J. Keating. The Riemann Zeta-Function and Quantum Chaology , 1993 .
[33] The Feynman Path Integral: An Historical Slice , 2003, quant-ph/0303034.
[34] On the Remainder in the Formula for N(T), the Number of Zeros of ζ(s) in the Strip 0 , 1928 .
[35] B. Derrida,et al. Polymers on disordered trees, spin glasses, and traveling waves , 1988 .
[36] Vorrapan Chandee. On the correlation of shifted values of the Riemann zeta function , 2009, 0910.0664.
[37] G. Biroli,et al. Extreme value problems in random matrix theory and other disordered systems , 2007, cond-mat/0702244.
[38] D. Ostrovsky. Mellin Transform of the Limit Lognormal Distribution , 2009 .
[39] B. Derrida. Random-energy model: An exactly solvable model of disordered systems , 1981 .
[40] D. R. Heath-Brown. Prime number theory and the Riemann Zeta-function , 2005 .
[41] P. Bourgade. Mesoscopic fluctuations of the zeta zeros , 2009, 0902.1757.
[42] Alberto Rosso,et al. Freezing transition in decaying Burgers turbulence and random matrix dualities , 2010, 1004.5025.
[43] V. Dotsenko. Universal randomness , 2010, 1009.3116.
[44] Edoardo Milotti,et al. 1/f noise: a pedagogical review , 2002, physics/0204033.
[45] Ivan Corwin. The Kardar-Parisi-Zhang equation and universality class , 2011, 1106.1596.
[46] S. Majumdar,et al. Exact distributions of the number of distinct and common sites visited by N independent random walkers. , 2013, Physical review letters.
[47] H. Kösters. On the occurrence of the sine kernel in connection with the shifted moments of the Riemann zeta function , 2008, 0803.1141.
[48] B. Derrida. A generalization of the Random Energy Model which includes correlations between energies , 1985 .
[49] P. Forrester. Asymptotics of spacing distributions at the hard edge for $\beta$-ensembles , 2012, 1208.2388.
[50] S. Sheffield. Gaussian free fields for mathematicians , 2003, math/0312099.
[51] E. Saksman,et al. Random conformal weldings , 2009, 0909.1003.
[52] Y. Fyodorov,et al. Freezing transition, characteristic polynomials of random matrices, and the Riemann zeta function. , 2012, Physical review letters.
[53] N. Snaith,et al. Random Matrix Theory and ζ(1/2+it) , 2000 .
[54] H. Widom. Toeplitz Determinants with Singular Generating Functions , 1973 .
[55] Scott Sheffield,et al. Critical Gaussian multiplicative chaos: Convergence of the derivative martingale , 2012, 1206.1671.
[56] T. Antal,et al. 1/f noise and extreme value statistics. , 2001, Physical review letters.
[57] Y. Fyodorov,et al. Statistical mechanics of logarithmic REM: duality, freezing and extreme value statistics of 1/f noises generated by Gaussian free fields , 2009, 0907.2359.
[58] P. Diaconis,et al. On the eigenvalues of random matrices , 1994, Journal of Applied Probability.
[59] Maury Bramson,et al. Convergence in Law of the Maximum of the Two‐Dimensional Discrete Gaussian Free Field , 2013, 1301.6669.
[60] D. Ostrovsky. Selberg Integral as a Meromorphic Function , 2013 .
[61] Leonard Susskind,et al. The Cosmic Landscape: String Theory and the Illusion of Intelligent Design , 2005 .
[62] Julius Jellinek,et al. Energy Landscapes: With Applications to Clusters, Biomolecules and Glasses , 2005 .
[63] THE KARDAR-PARISI-ZHANG,et al. The Kardar-Parisi-Zhang Equation and Universality Class , 2011 .
[64] Y. Fyodorov. Multifractality and freezing phenomena in random energy landscapes: An introduction , 2009, 0911.2765.
[65] Michael E. Fisher,et al. Toeplitz Determinants: Some Applications, Theorems, and Conjectures , 2007 .
[66] Giorgio Parisi. The Mean Field Theory of Spin Glasses: The Heuristic Replica Approach and Recent Rigorous Results , 2010 .
[67] J. P. Keating,et al. Integral Moments of L‐Functions , 2002, math/0206018.
[68] Olivier Daviaud. Extremes of the discrete two-dimensional Gaussian free field , 2004, math/0406609.
[69] Y. Fyodorov,et al. Counting Function Fluctuations and Extreme Value Threshold in Multifractal Patterns: The Case Study of an Ideal 1/f Noise , 2012, 1207.4614.