Infrared reflectance imaging in age‐related macular degeneration

The purpose of this article is to describe the appearance of age‐related macular degeneration (AMD) phenotypes using infrared (IR) reflectance imaging. IR reflectance imaging of the retina has the potential to highlight specific sub‐retinal features and pathology. However, its role in macular disease, specifically AMD, is often underestimated and requires clarification.

[1]  P T de Jong,et al.  Histologic features of the early stages of age-related macular degeneration. A statistical analysis. , 1992, Ophthalmology.

[2]  K. Freund,et al.  Ghost maculopathy: an artifact on near-infrared reflectance and multicolor imaging masquerading as chorioretinal pathology. , 2014, American journal of ophthalmology.

[3]  P. Kaiser,et al.  Current phase 1/2 research for neovascular age-related macular degeneration , 2015, Current opinion in ophthalmology.

[4]  R. Klein,et al.  Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. , 2014, The Lancet. Global health.

[5]  A. Hayen,et al.  Clinical model assisting with the collaborative care of glaucoma patients and suspects , 2015, Clinical & experimental ophthalmology.

[6]  A. Elsner,et al.  Characteristics of exudative age-related macular degeneration determined in vivo with confocal and indirect infrared imaging. , 1996, Ophthalmology.

[7]  S Burns,et al.  Scanning laser reflectometry of retinal and subretinal tissues. , 2000, Optics express.

[8]  E. Souied,et al.  PATHOLOGIC INSIGHTS FROM INTEGRATED IMAGING OF RETICULAR PSEUDODRUSEN IN AGE-RELATED MACULAR DEGENERATION , 2011, Retina.

[9]  M. Kalloniatis,et al.  Age-Related Macular Degeneration: Linking Clinical Presentation to Pathology , 2014, Optometry and vision science : official publication of the American Academy of Optometry.

[10]  A. Fowler Stars in the Sky , 1996 .

[11]  Sebastian Wolf,et al.  Morphologic changes in patients with geographic atrophy assessed with a novel spectral OCT-SLO combination. , 2008, Investigative ophthalmology & visual science.

[12]  Akio Oishi,et al.  SENSITIVITY AND SPECIFICITY OF DETECTING RETICULAR PSEUDODRUSEN IN MULTIMODAL IMAGING IN JAPANESE PATIENTS , 2013, Retina.

[13]  L. D. Del Priore,et al.  Natural history of predominantly classic, minimally classic, and occult subgroups in exudative age-related macular degeneration. , 2009, Ophthalmology.

[14]  A. Elsner,et al.  Deep retinal vascular anomalous complexes in advanced age-related macular degeneration. , 1996, Ophthalmology.

[15]  B. J. Klevering,et al.  Near-infrared reflectance imaging of neovascular age-related macular degeneration , 2009, Graefe's Archive for Clinical and Experimental Ophthalmology.

[16]  P. Walter,et al.  Fundus near infrared fluorescence correlates with fundus near infrared reflectance. , 2006, Investigative ophthalmology & visual science.

[17]  L. Ayton,et al.  Reticular pseudodrusen: a risk factor for geographic atrophy in fellow eyes of individuals with unilateral choroidal neovascularization. , 2014, Ophthalmology.

[18]  F. Holz,et al.  Agreement among ophthalmologists in evaluating fluorescein angiograms in patients with neovascular age-related macular degeneration for photodynamic therapy eligibility (FLAP-study). , 2003, Ophthalmology.

[19]  R. Klein,et al.  The Wisconsin age-related maculopathy grading system. , 1991, Ophthalmology.

[20]  N. Eter,et al.  SUBRETINAL DRUSENOID DEPOSITS ASSOCIATED WITH PIGMENT EPITHELIUM DETACHMENT IN AGE-RELATED MACULAR DEGENERATION , 2012, Retina.

[21]  Stephen A. Burns,et al.  Infrared imaging of sub-retinal structures in the human ocular fundus , 1996, Vision Research.

[22]  Jennifer I. Lim,et al.  A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. , 2001, Archives of ophthalmology.

[23]  Usha Chakravarthy,et al.  The natural history and prognosis of neovascular age-related macular degeneration: a systematic review of the literature and meta-analysis. , 2008, Ophthalmology.

[24]  Lea Querques,et al.  Multimodal imaging of dry age‐related macular degeneration , 2012, Acta ophthalmologica.

[25]  C L Trempe,et al.  Spatial extent of pigment epithelial detachments in age-related macular degeneration. , 1999, Ophthalmology.

[26]  Usha Chakravarthy,et al.  Clinical classification of age-related macular degeneration. , 2013, Ophthalmology.

[27]  Michael Kalloniatis,et al.  In vivo quantification of retinal changes associated with drusen in age-related macular degeneration. , 2015, Investigative ophthalmology & visual science.

[28]  Thomas P. Karnowski,et al.  Geographic atrophy segmentation in infrared and autofluorescent retina images using supervised learning , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[29]  M. E. Hartnett,et al.  Infrared imaging of cystoid macular edema , 1999, Graefe's Archive for Clinical and Experimental Ophthalmology.

[30]  S. Vujosevic,et al.  Confocal scanning laser ophthalmoscope in the retromode imaging modality in exudative age-related macular degeneration , 2012, Graefe's Archive for Clinical and Experimental Ophthalmology.

[31]  Gretchen A. Stevens,et al.  Causes of vision loss worldwide, 1990-2010: a systematic analysis. , 2013, The Lancet. Global health.

[32]  B. J. Klevering,et al.  Cuticular drusen: Stars in the sky , 2013, Progress in Retinal and Eye Research.

[33]  E. Souied,et al.  HYPERREFLECTIVE PYRAMIDAL STRUCTURES ON OPTICAL COHERENCE TOMOGRAPHY IN GEOGRAPHIC ATROPHY AREAS , 2014, Retina.

[34]  C. Curcio,et al.  Reticular pseudodrusen are subretinal drusenoid deposits. , 2010, Ophthalmology.

[35]  P. Sharp,et al.  The scanning laser ophthalmoscope. , 1997, Physics in medicine and biology.

[36]  Daniel X Hammer,et al.  Line-scanning laser ophthalmoscope. , 2006, Journal of biomedical optics.

[37]  R. Webb,et al.  Confocal scanning laser ophthalmoscope. , 1987, Applied optics.

[38]  P T de Jong,et al.  An international classification and grading system for age-related maculopathy and age-related macular degeneration , 1995 .

[39]  L. D. Del Priore,et al.  Drusen in age-related macular degeneration: pathogenesis, natural course, and laser photocoagulation-induced regression. , 1999, Survey of ophthalmology.

[40]  R. T. Smith,et al.  Image registration and multimodal imaging of reticular pseudodrusen. , 2011, Investigative ophthalmology & visual science.

[41]  Richard F Spaide,et al.  DRUSEN CHARACTERIZATION WITH MULTIMODAL IMAGING , 2010, Retina.

[42]  Steffen Schmitz-Valckenberg,et al.  Combined confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography imaging of reticular drusen associated with age-related macular degeneration. , 2010, Ophthalmology.

[43]  Matthew D. Davis,et al.  The Age-Related Eye Disease Study Severity Scale for Age-Related Macular Degeneration , 2015 .

[44]  C L Trempe,et al.  Infrared scanning laser tomography of macular cysts. , 2000, Ophthalmology.

[45]  R. T. Smith,et al.  RETICULAR MACULAR DISEASE IS ASSOCIATED WITH MULTILOBULAR GEOGRAPHIC ATROPHY IN AGE-RELATED MACULAR DEGENERATION , 2013, Retina.

[46]  Gaetano Barile,et al.  Reticular macular disease. , 2009, American journal of ophthalmology.

[47]  J S Sunness,et al.  Enlargement of atrophy and visual acuity loss in the geographic atrophy form of age-related macular degeneration. , 1999, Ophthalmology.

[48]  Glenn J Jaffe,et al.  Reticular drusen associated with geographic atrophy in age-related macular degeneration. , 2011, Investigative ophthalmology & visual science.

[49]  Monika Fleckenstein,et al.  Clinical evaluation of simultaneous confocal scanning laser ophthalmoscopy imaging combined with high‐resolution, spectral‐domain optical coherence tomography , 2010, Acta ophthalmologica.

[50]  E. Souied,et al.  Infrared features of classic choroidal neovascularisation in exudative age-related macular degeneration , 2008, British Journal of Ophthalmology.

[51]  S. Fine,et al.  Classification and Grading System for Age-related Macular Degeneration , 2007, International ophthalmology clinics.

[52]  F. Holz,et al.  Prädiktive Nahinfrarot-SLO-Merkmale für Risse des retinalen Pigmentepithels bei altersabhängiger Makuladegeneration , 2013, Klin Monatsbl Augenheilkd.

[53]  Shuliang Jiao,et al.  Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography. , 2005, Optics express.

[54]  R. Lee,et al.  Glaucoma versus red disease: imaging and glaucoma diagnosis , 2012, Current opinion in ophthalmology.

[55]  R. Spaide COLOCALIZATION OF PSEUDODRUSEN AND SUBRETINAL DRUSENOID DEPOSITS USING HIGH-DENSITY EN FACE SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY , 2014, Retina.

[56]  A. Tsujikawa,et al.  Prevalence and genomic association of reticular pseudodrusen in age-related macular degeneration. , 2013, American journal of ophthalmology.

[57]  J. Vander,et al.  The Age-Related Eye Disease Study Severity Scale for Age-Related Macular Degeneration: AREDS Report No 17 , 2006 .

[58]  Ann E Elsner,et al.  Imaging polarimetry in patients with neovascular age-related macular degeneration. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.