Numerical methods based controller design for mobile robots

This paper presents the design of four controllers for a mobile robot such that the system may follow a preestablished trajectory. To reach this aim, the kinematic model of a mobile robot is approximated using numerical methods. Then, from such approximation, the control actions to get a minimal tracking error are calculated. Both simulation and experimental results on a PIONEER 2DX mobile robot are presented, showing a good performance of the four proposed mobile robot controllers. Also, an application of the proposed controllers to a leader robot following problem is shown; in it, the relative position between robots is obtained through a laser.

[1]  Julio E. Normey-Rico,et al.  Mobile robot path tracking using a robust PID controller , 2001 .

[2]  Georges Bastin,et al.  Structural properties and classification of kinematic and dynamic models of wheeled mobile robots , 1996, IEEE Trans. Robotics Autom..

[3]  Fumio Miyazaki,et al.  A stable tracking control method for an autonomous mobile robot , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[4]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[5]  Ching-Hung Lee,et al.  Tracking control of unicycle-modeled mobile robots using a saturation feedback controller , 2001, IEEE Trans. Control. Syst. Technol..

[6]  Ju-Jang Lee,et al.  Design of a robust adaptive controller for a mobile robot , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[7]  F.D. del Rio,et al.  Error adaptive tracking for mobile robots , 2002, IEEE 2002 28th Annual Conference of the Industrial Electronics Society. IECON 02.

[8]  Shuli Sun Designing approach on trajectory-tracking control of mobile robot , 2005 .

[9]  Norihiko Adachi,et al.  Adaptive tracking control of a nonholonomic mobile robot , 2000, IEEE Trans. Robotics Autom..

[10]  Dongkyoung Chwa,et al.  Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates , 2004, IEEE Transactions on Control Systems Technology.

[11]  Jong Hyeon Park,et al.  Virtual trajectory in tracking control of mobile robots , 2003, Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003).

[12]  R. Fierro,et al.  Decentralized cooperative control - A multivehicle platform for research in networked embedded systems , 2007, IEEE Control Systems.

[13]  Julio E. Normey-Rico,et al.  A Smith-predictor-based generalised predictive controller for mobile robot path-tracking , 1998 .

[14]  Warren E. Dixon,et al.  Adaptive tracking and regulation of a wheeled mobile robot with controller/update law modularity , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[15]  Toshio Tsuji,et al.  Feedback control of nonholonomic mobile robots using time base generator , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[16]  K. D. Do,et al.  Global output-feedback path tracking of unicycle-type mobile robots , 2006 .

[17]  Hyun-Sik Shim,et al.  Stability and four-posture control for nonholonomic mobile robots , 2004, IEEE Transactions on Robotics and Automation.

[18]  Shuli Sun,et al.  Path tracking and a practical point stabilization of mobile robot , 2004 .

[19]  Frank L. Lewis,et al.  Control of a nonholonomic mobile robot: backstepping kinematics into dynamics , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[20]  Julio E. Normey-Rico,et al.  A Smith Predictor Based Generalized Predictive Controller for Mobile Robot Path-Tracking , 1998 .