Computing Edge States without Hard Truncation

We present a numerical method which accurately computes the discrete spectrum and associated bound states of Hamiltonians which model electronic "edge" states localized at boundaries of one and two-dimensional crystalline materials. The problem is non-trivial since arbitrarily large finite "hard" truncations of the Hamiltonian in the infinite bulk direction tend to produce spurious bound states partially supported at the truncation. Our method, which overcomes this difficulty, is to compute the Green's function of the Hamiltonian by imposing an appropriate boundary condition in the bulk direction; then, the spectral data is recovered via Riesz projection. We demonstrate our method's effectiveness by studies of edge states at a graphene zig-zag edge in the presence of defects modeled both by a discrete tight-binding model and a continuum PDE model under finite difference discretization. Our method may also be used to study states localized at domain wall-type edges in one and two-dimensional materials where the edge Hamiltonian is infinite in both directions; we demonstrate this for the case of a tight-binding model of distinct honeycomb structures joined along a zig-zag edge.

[1]  B. Halperin Quantized Hall conductance, current carrying edge states, and the existence of extended states in a two-dimensional disordered potential , 1982 .

[2]  W. Kohn,et al.  Wannier functions in crystals with surfaces , 1974 .

[3]  Rachel J. Steiner,et al.  The spectral theory of periodic differential equations , 1973 .

[4]  Q. Xue,et al.  Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator , 2013, Science.

[5]  Lin Lin,et al.  PEXSI-$\Sigma$: A Green's function embedding method for Kohn-Sham density functional theory , 2016, 1606.00515.

[6]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[7]  A. Elgart,et al.  Equality of the Bulk and Edge Hall Conductances in a Mobility Gap , 2004, math-ph/0409017.

[8]  Y. Hatsugai,et al.  Chern number and edge states in the integer quantum Hall effect. , 1993, Physical review letters.

[9]  M. Weinstein,et al.  Edge states and the valley Hall effect , 2019, Advances in Mathematics.

[10]  A. Drouot Characterization of edge states in perturbed honeycomb structures , 2018, Pure and Applied Analysis.

[11]  S. Huber,et al.  Observation of phononic helical edge states in a mechanical topological insulator , 2015, Science.

[12]  M. Soljačić,et al.  Topological photonics , 2014, Nature Photonics.

[13]  G. Bal Topological protection of perturbed edge states , 2017, Communications in Mathematical Sciences.

[14]  G. V. Chester,et al.  Solid State Physics , 2000 .

[15]  F. Oppen,et al.  Boundary Green functions of topological insulators and superconductors , 2017, 1704.05862.

[16]  Liang Fu,et al.  Topological crystalline insulators. , 2010, Physical review letters.

[17]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[18]  V. Yakovenko,et al.  Shockley model description of surface states in topological insulators , 2012, 1202.5526.

[19]  G. Montambaux,et al.  Zak phase and the existence of edge states in graphene , 2011, 1109.4608.

[20]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[21]  A. Figotin,et al.  Resolvent method for computations of localized defect modes of H-polarization in two-dimensional photonic crystals. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Liang Fu,et al.  Topological insulators in three dimensions. , 2006, Physical review letters.

[23]  Yosuke Kubota Controlled Topological Phases and Bulk-edge Correspondence , 2015, 1511.05314.

[24]  James Demmel,et al.  The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part I: theory and algorithms , 1993, TOMS.

[25]  S. Adam,et al.  Electric-field-tuned topological phase transition in ultrathin Na3Bi , 2018, Nature.

[26]  L'aszl'o Oroszl'any,et al.  A Short Course on Topological Insulators: Band-structure topology and edge states in one and two dimensions , 2015, 1509.02295.

[27]  G. M. Graf,et al.  The Bulk-Edge Correspondence for Disordered Chiral Chains , 2018, Communications in Mathematical Physics.

[28]  P. Delplace,et al.  Topological origin of equatorial waves , 2017, Science.

[29]  J. Kellendonk,et al.  EDGE CURRENT CHANNELS AND CHERN NUMBERS IN THE INTEGER QUANTUM HALL EFFECT , 2002 .

[30]  Alan J. Heeger,et al.  Solitons in polyacetylene , 1979 .

[31]  C. Fefferman,et al.  Defect Modes for Dislocated Periodic Media , 2018, Communications in Mathematical Physics.

[32]  Shou-Cheng Zhang,et al.  Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells , 2006, Science.

[33]  E. J. Mele,et al.  Quantum spin Hall effect in graphene. , 2004, Physical review letters.

[34]  Barry Simon,et al.  Semiclassical analysis of low lying eigenvalues, II. Tunneling* , 1984 .

[35]  Y. Zhu,et al.  Elliptic Operators with Honeycomb Symmetry: Dirac Points, Edge States and Applications to Photonic Graphene , 2017, Archive for Rational Mechanics and Analysis.

[36]  L. Molenkamp,et al.  Quantum Spin Hall Insulator State in HgTe Quantum Wells , 2007, Science.

[37]  C. Fefferman,et al.  Edge States in Honeycomb Structures , 2015, 1506.06111.

[38]  K. Kusakabe,et al.  Peculiar Localized State at Zigzag Graphite Edge , 1996 .

[39]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[40]  R. Mong,et al.  Edge states and the bulk-boundary correspondence in Dirac Hamiltonians , 2010, 1010.2778.

[41]  J. Kellendonk,et al.  Quantization of edge currents for continuous magnetic operators , 2004, math-ph/0405021.

[42]  C. Fefferman,et al.  Edge States of continuum Schroedinger operators for sharply terminated honeycomb structures , 2018 .

[43]  Lin Lin,et al.  PEXSI-$\Sigma$: A Green's function embedding method for Kohn-Sham density functional theory , 2016, 1606.00515.

[44]  D. Hsieh,et al.  A topological Dirac insulator in a quantum spin Hall phase , 2008, Nature.

[45]  Kristian Kirsch,et al.  Methods Of Modern Mathematical Physics , 2016 .

[46]  Gian Michele Graf,et al.  Bulk–Edge Correspondence for Two-Dimensional Floquet Topological Insulators , 2017, 1707.09212.

[47]  Zheng Wang,et al.  Observation of unidirectional backscattering-immune topological electromagnetic states , 2009, Nature.

[48]  W. Magnus,et al.  Hill's equation , 1966 .

[49]  Sofiane Soussi,et al.  Convergence of the Supercell Method for Defect Modes Calculations in Photonic Crystals , 2005, SIAM J. Numer. Anal..

[50]  M. Porta,et al.  Bulk-Edge Correspondence for Two-Dimensional Topological Insulators , 2012, 1207.5989.

[51]  T. Loring K-Theory and Pseudospectra for Topological Insulators , 2015, 1502.03498.

[52]  T. Loring Bulk spectrum and K-theory for infinite-area topological quasicrystals , 2018, Journal of Mathematical Physics.

[53]  V. Chua,et al.  Of bulk and boundaries: Generalized transfer matrices for tight-binding models , 2015, 1510.04279.

[54]  Haldane,et al.  Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly" , 1988, Physical review letters.

[55]  C. Fefferman,et al.  Honeycomb Schrödinger Operators in the Strong Binding Regime , 2016, 1610.04930.

[56]  Matt Probert Computer simulation of liquids, 2nd edition , 2018, Contemporary Physics.

[57]  Nicholas J. Higham,et al.  Computing AAlpha, log(A), and Related Matrix Functions by Contour Integrals , 2008, SIAM J. Numer. Anal..

[58]  M. Segev,et al.  Photonic Floquet topological insulators , 2012, Nature.

[59]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[60]  S. Adam,et al.  Electric-field-tuned topological phase transition in ultrathin Na3Bi , 2018, Nature.

[61]  E. Harrell Double Wells , 1980 .

[62]  Fujita,et al.  Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. , 1996, Physical review. B, Condensed matter.