Twelve Limit Cycles in a cubic Case of the 16TH Hilbert Problem

In this paper, we prove the existence of twelve small (local) limit cycles in a planar system with third-degree polynomial functions. The best result so far in literature for a cubic order planar system is eleven limit cycles. The system considered in this paper has a saddle point at the origin and two focus points which are symmetric about the origin. This system was studied by the authors and shown to exhibit ten small limit cycles: five around each of the focus points. It will be proved in this paper that the system can have twelve small limit cycles. The major tasks involved in the proof are to compute the focus values and solve coupled enormous large polynomial equations. A computationally efficient perturbation technique based on multiple scales is employed to calculate the focus values. Moreover, the focus values are perturbed to show that the system can exactly have twelve small limit cycles.