An Analysis of Some Properties and the Use of the Twist Map for the Finite Frenkel–Kontorova Model

We discuss the twist map, with a special interest in its use for the finite Frenkel–Kontorova model. We explain the meaning of the tensile force in some proposed models. We demonstrate that the application of the twist map for the finite FK model is not correct, because the procedure ignores the necessary boundary conditions.

[1]  P. Puschnig,et al.  A one-dimensional high-order commensurate phase of tilted molecules , 2022, Physical chemistry chemical physics : PCCP.

[2]  W. Quapp,et al.  Comment on ‘Out-of-equilibrium Frenkel–Kontorova model’ (Imparato A 2021 J. Stat. Mech. 013214) , 2022, Journal of Statistical Mechanics: Theory and Experiment.

[3]  J. M. Bofill,et al.  Description of zero field steps on the potential energy surface of a Frenkel-Kontorova model for annular Josephson junction arrays , 2021, The European Physical Journal B.

[4]  W. Quapp,et al.  Description of Shapiro steps on the potential energy surface of a Frenkel–Kontorova model, Part II: free boundaries of the chain , 2021, The European Physical Journal B.

[5]  J. M. Bofill,et al.  Description of Shapiro steps on the potential energy surface of a Frenkel–Kontorova model Part I: The chain in a variable box , 2021, The European Physical Journal B.

[6]  J. M. Bofill,et al.  The movement of a one-dimensional Wigner solid explained by a modified Frenkel-Kontorova model , 2020 .

[7]  C. Bechinger,et al.  Structural lubricity in soft and hard matter systems , 2020, Nature Communications.

[8]  Rahul Sawant,et al.  Realizing the Frenkel-Kontorova model with Rydberg-dressed atoms , 2020, 2006.16304.

[9]  O. Zhirov,et al.  Thermoelectricity Modeling with Cold Dipole Atoms in Aubry Phase of Optical Lattice , 2019, Applied Sciences.

[10]  J. M. Bofill,et al.  Sliding paths for series of Frenkel-Kontorova models – a contribution to the concept of 1D-superlubricity , 2019, The European Physical Journal B.

[11]  J. M. Bofill,et al.  A model for a driven Frenkel–Kontorova chain , 2019, The European Physical Journal B.

[12]  W. Quapp,et al.  Newton trajectories for the tilted Frenkel–Kontorova model , 2019, Molecular Physics.

[13]  O. Zhirov,et al.  Thermoelectricity of cold ions in optical lattices , 2019, The European Physical Journal D.

[14]  J. M. Bofill,et al.  Toward a theory of mechanochemistry: Simple models from the very beginnings , 2018, International Journal of Quantum Chemistry.

[15]  R. de la Llave,et al.  A Numerical Investigation of the Pinning Phenomenon in Quasi-Periodic Frenkel Kontrova Model Under an External Force , 2018, Journal of Statistical Physics.

[16]  J. Lin,et al.  Transport Properties of a Quasi-1D Wigner Solid on Liquid Helium Confined in a Microchannel with Periodic Potential , 2018, Journal of Low Temperature Physics.

[17]  J. M. Bofill,et al.  Mechanochemistry on the Müller–Brown surface by Newton trajectories , 2018 .

[18]  J. M. Bofill,et al.  An algorithm to locate optimal bond breaking points on a potential energy surface for applications in mechanochemistry and catalysis. , 2017, The Journal of chemical physics.

[19]  I. Novak,et al.  Segmentation in cohesive systems constrained by elastic environments , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  A. N. Filonov,et al.  The ground state of the Frenkel–Kontorova model , 2016, Physics of the Solid State.

[21]  J. M. Bofill,et al.  A contribution to a theory of mechanochemical pathways by means of Newton trajectories , 2016, Theoretical Chemistry Accounts.

[22]  D. Makarov,et al.  Reaction Coordinates and Pathways of Mechanochemical Transformations. , 2016, The journal of physical chemistry. B.

[23]  J. Pouget The Peierls instability and charge density wave in one-dimensional electronic conductors , 2016 .

[24]  D. Gangloff,et al.  Observation of Aubry-type transition in finite atom chains via friction. , 2015, Nature materials.

[25]  W. Quapp Can we understand the branching of reaction valleys for more than two degrees of freedom? , 2015, Journal of Mathematical Chemistry.

[26]  S. Kais,et al.  A Density-Matrix Renormalization Group Study of a One-Dimensional Incommensurate Quantum Frenkel-Kontorova Model , 2014, 1405.2902.

[27]  A. Gumerov,et al.  One-dimensional dynamics of domain walls in two-layer ferromagnet structure with different parameters of magnetic anisotropy and exchange , 2013 .

[28]  O. Iaroshenko,et al.  Vortex phase separation in mesoscopic superconductors , 2013, Scientific Reports.

[29]  R. Llave,et al.  The Analyticity Breakdown for Frenkel-Kontorova Models in Quasi-periodic Media: Numerical Explorations , 2013, 1301.0823.

[30]  Z. Shao,et al.  Existence and stability of the resonant phenomena in the dc- and ac-driven overdamped Frenkel-Kontorova model with the incommensurate structure. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  M. Bae,et al.  Fractional order Shapiro steps in superconducting nanowires , 2008, 0810.1730.

[32]  Y. Lozovik,et al.  Multi‐Walled Nanotubes: Commensurate‐Incommensurate Phase Transition and NEMS Applications , 2006 .

[33]  O. Zhirov,et al.  Frenkel-Kontorova model with cold trapped ions , 2006, cond-mat/0606135.

[34]  Yi Guo,et al.  Lyapunov stability and precise control of the frictional dynamics of a one-dimensional particle array , 2006 .

[35]  R. MacKay,et al.  Nonlinear structures and thermodynamic instabilities in a one-dimensional lattice system. , 2004, Physical review letters.

[36]  W. Quapp,et al.  Reaction channels of the potential energy surface: application of Newton trajectories , 2004 .

[37]  V. Vinokur,et al.  Mode locking of vortex matter driven through mesoscopic channels. , 2002, Physical review letters.

[38]  Bambi Hu,et al.  Mode-locking of incommensurate phase by quantum zero-point energy in the Frenkel-Kontorova model , 2001, cond-mat/0106423.

[39]  E. Makhonina,et al.  Defects in Inorganic Suprastructures with Incommensurate Structural Elements: The Static Frenkel–Kontorova Model for Finite Systems , 2001 .

[40]  P. Kes,et al.  Transport Properties of Vortices in Easy Flow Channels: A Frenkel-Kontorova Study , 1999, cond-mat/9903360.

[41]  Bambi Hu,et al.  Wave transmission, phonon localization, and heat conduction of a one-dimensional Frenkel-Kontorova chain , 1999, cond-mat/9901196.

[42]  R. MacKay,et al.  GRADIENT DYNAMICS OF TILTED FRENKEL-KONTOROVA MODELS , 1998 .

[43]  L. Trallori Magnetic superlattices, classical spin chains, and the Frenkel-Kontorova model , 1998 .

[44]  S. Strogatz,et al.  Discreteness-induced resonances and AC voltage amplitudes in long one-dimensional Josephson junction arrays , 1997, cond-mat/9710207.

[45]  R. Nasilowski AN UNORTHODOX ANALYSIS OF THE FRENKEL-KONTOROVA MODEL , 1996 .

[46]  Peyrard,et al.  Mobility and diffusivity in a generalized Frenkel-Kontorova model. , 1996, Physical review. B, Condensed matter.

[47]  Bambi Hu,et al.  Nonanalytic twist maps and Frenkel-Kontorova models , 1994 .

[48]  Walker,et al.  Generalized Frenkel-Kontorova model for structural modulations in bismuth high-Tc superconductors and related compounds. , 1992, Physical review. B, Condensed matter.

[49]  Robert S. MacKay,et al.  Equivalence of uniform hyperbolicity for symplectic twist maps and phonon gap for Frenkel-Kontorova models , 1992 .

[50]  Black,et al.  Universal phase diagram in the generalized Frenkel-Kontorova model. , 1991, Physical review. B, Condensed matter.

[51]  S. Aubry,et al.  Chaotic trajectories in the standard map. The concept of anti-integrability , 1990 .

[52]  G. Grüner,et al.  The dynamics of charge-density waves , 1988 .

[53]  L. Pustyl'nikov A ground state in the Frenkel'-Kontorova model , 1988 .

[54]  S. Aubry,et al.  Polarisation and transition by breaking of analyticity in a one-dimensional model for incommensurate structures in an electric field , 1987 .

[55]  Griffiths,et al.  Effective potentials: A new approach and new results for one-dimensional systems with competing length scales. , 1986, Physical review letters.

[56]  S. Stoyanov,et al.  Resonance-induced cluster-mobility: Dynamics of a finite Frenkel-Kontorova model , 1985 .

[57]  B. Bergersen,et al.  Aubry transition in a finite modulated chain , 1984 .

[58]  S. Aubry,et al.  The discrete Frenkel-Kontorova model and its extensions: I. Exact results for the ground-states , 1983 .

[59]  S. Aubry The twist map, the extended Frenkel-Kontorova model and the devil's staircase , 1983 .

[60]  Michel Peyrard,et al.  Critical behaviour at the transition by breaking of analyticity in the discrete Frenkel-Kontorova model , 1983 .

[61]  S. Aubry Devil's staircase and order without periodicity in classical condensed matter , 1983 .

[62]  S. Aubry Defectibility and frustration in incommensurate structures: The devil's stair case transformation , 1980 .

[63]  V. Celli,et al.  A Solution to the Frenkel‐Kontorova Dislocation Model , 1962 .

[64]  A. Seeger,et al.  Theorie der Versetzungen in eindimensionalen Atomreihen , 1950 .

[65]  F. C. Frank,et al.  One-dimensional dislocations. I. Static theory , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.