Modeling Low Mach Number Reacting Flow with Detailed Chemistry and Transport

An efficient projection scheme is developed for the simulation of reacting flow with detailed kinetics and transport. The scheme is based on a zero-Mach-number formulation of the compressible conservation equations for an ideal gas mixture. It relies on Strang splitting of the discrete evolution equations, where diffusion is integrated in two half steps that are symmetrically distributed around a single stiff step for the reaction source terms. The diffusive half-step is integrated using an explicit single-step, multistage, Runge–Kutta–Chebyshev (RKC) method. The resulting construction is second-order convergent, and has superior efficiency due to the extended real-stability region of the RKC scheme. Two additional efficiency-enhancements are also explored, based on an extrapolation procedure for the transport coefficients and on the use of approximate Jacobian data evaluated on a coarse mesh. We demonstrate the construction in 1D and 2D flames, and examine consequences of splitting errors. By including the above enhancements, performance tests using 2D computations with a detailed C1C2 methane-air mechanism and a mixture-averaged transport model indicate that speedup factors of about 15 are achieved over the starting split-stiff scheme

[1]  A. Medovikov High order explicit methods for parabolic equations , 1998 .

[2]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[3]  James A. Sethian,et al.  THE DERIVATION AND NUMERICAL SOLUTION OF THE EQUATIONS FOR ZERO MACH NUMBER COMBUSTION , 1985 .

[4]  J. Verwer A class of stabilized three-step runge-kutta methods for the numerical integration of parabolic equations : (preprint) , 1977 .

[5]  H. Schlichting Boundary Layer Theory , 1955 .

[6]  B. Sportisse An Analysis of Operator Splitting Techniques in the Stiff Case , 2000 .

[7]  D. B. Spalding,et al.  Computational Fluid Mechanics and Heat Transfer. By D. A ANDERSON, J. C. TANNEHILL and R. H. PLETCHER. Hemisphere, 1984. 599 pp. $39.95. , 1986, Journal of Fluid Mechanics.

[8]  Willem Hundsdorfer,et al.  A numerical study for global atmospheric transport-chemistry problems , 1998 .

[9]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[10]  S. Orszag,et al.  High-order splitting methods for the incompressible Navier-Stokes equations , 1991 .

[11]  Alexei A. Medovikov,et al.  Third Order Explicit Method for the Stiff Ordinary Differential Equations , 1996, WNAA.

[12]  J. Verwer Explicit Runge-Kutta methods for parabolic partial differential equations , 1996 .

[13]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[14]  Habib N. Najm,et al.  Regular Article: A Semi-implicit Numerical Scheme for Reacting Flow , 1999 .

[15]  Chia-Jung Hsu Numerical Heat Transfer and Fluid Flow , 1981 .

[16]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[17]  P. Houwen,et al.  On the Internal Stability of Explicit, m‐Stage Runge‐Kutta Methods for Large m‐Values , 1979 .

[18]  R. Pletcher,et al.  Computational Fluid Mechanics and Heat Transfer. By D. A ANDERSON, J. C. TANNEHILL and R. H. PLETCHER. Hemisphere, 1984. 599 pp. $39.95. , 1986, Journal of Fluid Mechanics.

[19]  M S Day,et al.  Numerical simulation of laminar reacting flows with complex chemistry , 2000 .

[20]  V. Lebedev,et al.  Explicit difference schemes for solving stiff systems of ODEs and PDEs with complex spectrum , 1998 .

[21]  L. Shampine,et al.  RKC: an explicit solver for parabolic PDEs , 1998 .

[22]  Joke Blom,et al.  A comparison of stiff ode solvers for atmospheric chemistry problems , 1995 .

[23]  Liaqat Ali Khan,et al.  An operator splitting algorithm for coupled one-dimensional advection-diffusion-reaction equations , 1995 .

[24]  Willem Hundsdorfer,et al.  A Second-Order Rosenbrock Method Applied to Photochemical Dispersion Problems , 1999, SIAM J. Sci. Comput..

[25]  P. Colella,et al.  A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .

[26]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[27]  P. Houwen Explicit Runge-Kutta formulas with increased stability boundaries , 1972 .

[28]  Explicit fourth-order methods for stiff systems , 1999 .

[29]  P. S. Wyckoff,et al.  A Semi-implicit Numerical Scheme for Reacting Flow , 1998 .

[30]  Habib N. Najm,et al.  A Study of Flame Observables in Premixed Methane - Air Flames , 1998 .

[31]  Willem Hundsdorfer,et al.  Vectorization and Parallelization of a Numerical Scheme for 3D Global Atmospheric Transport Chemistry Problems , 1996 .

[32]  Joel H. Ferziger,et al.  Simulations of flame-vortex interactions , 1991 .

[33]  Alexandre J. Chorin,et al.  On the Convergence of Discrete Approximations to the Navier-Stokes Equations , 1969 .

[34]  Q. Sheng Solving Linear Partial Differential Equations by Exponential Splitting , 1989 .

[35]  S. Chan Transport phenomena in combustion : proceedings of the Eighth International Symposium on Transport Phenomena in Combustion (ISTP-VIII) held in San Francisco, California, July 16-20, 1995 , 1996 .

[36]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[37]  S. Turek On discrete projection methods for the incompressible Navier-Stokes equations: an algorithmical approach , 1997 .

[38]  Joseph P. Wright Numerical Instability due to Varying Time Steps in Explicit Wave Propagation and Mechanics Calculations , 1998 .

[39]  J. Verwer A Note on a Runge-Kutta-Chebyshev Method , 1982 .

[40]  Philip M. Gresho,et al.  On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .

[41]  Jens Kristian Holmen,et al.  Algebraic splitting for incompressible Navier-Stokes equations , 2002 .

[42]  James J. Riley,et al.  Direct numerical simulations of a reacting mixing layer with chemical heat release , 1985 .

[43]  Assyr Abdulle,et al.  On Roots and Error Constants of Optimal Stability Polynomials , 2000 .

[44]  J. Ferziger,et al.  Full numerical simulation of coflowing, axisymmetric jet diffusion flames , 1990 .

[45]  G. D. Byrne,et al.  VODE: a variable-coefficient ODE solver , 1989 .

[46]  Willem Hundsdorfer,et al.  Convergence properties of the Runge-Kutta-Chebyshev method , 1990 .

[47]  M. Minion,et al.  Accurate projection methods for the incompressible Navier—Stokes equations , 2001 .

[48]  Jan G. Verwer,et al.  An Implementation of a Class of Stabilized Explicit Methods for the Time Integration of Parabolic Equations , 1980, TOMS.

[49]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[50]  Habib N. Najm,et al.  Premixed flame response to unsteady strain-rate and curvature , 1996 .

[51]  Willem Hundsdorfer,et al.  A note on splitting errors for advection-reaction equations , 1995 .