The scanning tunneling microscope as a tool for nanofabrication

The scanning tunneling microscope (STM) has proven to be an unsurpassed instrument for studying surfaces with sub-nanometer resolution in all three spatial dimensions. The same circumstances that permit the STM to image with atomic resolution also allow it to function as a highly localized probe capable of exerting human influence upon regions of only nanometers in extent. Demonstrations of the STM's ability to modify matter at the nanometer scale give evidence of its promise as a tool for nanofabrication applications. In addition to presenting some recent results of STM modifications of Au and graphite substrates, this paper introduces a system for classifying the various mechanisms by which an STM may induce modifications, and classifies published and new experimental observations within this framework.

[1]  N. Mikoshiba,et al.  Supported metal model catalyst surfaces examined by scanning tunnelling microscopy , 1870 .

[2]  Tip‐bias induced surface modification on gold surfaces , 1870 .

[3]  Russell D. Young,et al.  The Topografiner: An Instrument for Measuring Surface Microtopography , 1972 .

[4]  H. Eaton,et al.  Field-induced stresses in field emitters , 1978 .

[5]  J. Clarke,et al.  Direct imaging of Au and Ag clusters by scanning tunneling microscopy , 1986 .

[6]  R Gomer,et al.  Possible mechanisms of atom transfer in scanning tunneling microscopy , 1985, IBM J. Res. Dev..

[7]  John Clarke,et al.  Surface modification with the scanning tunneling microscope , 1986, IBM J. Res. Dev..

[8]  Pohl,et al.  Experimental observation of forces acting during scanning tunneling microscopy. , 1986, Physical review letters.

[9]  Roger Fabian W. Pease,et al.  Lithography with the scanning tunneling microscope , 1986 .

[10]  Clarke,et al.  Contamination-mediated deformation of graphite by the scanning tunneling microscope. , 1986, Physical review. B, Condensed matter.

[11]  Roland Wiesendanger,et al.  STM activity at the University of Basel , 1986, IBM J. Res. Dev..

[12]  N. D. Lang Theory of single-atom imaging in the scanning tunneling microscope. , 1986 .

[13]  J. Gimzewski,et al.  Transition from the tunneling regime to point contact studied using scanning tunneling microscopy. , 1987, Physical review. B, Condensed matter.

[14]  Urs Staufer,et al.  Nanometer scale structure fabrication with the scanning tunneling microscope , 1987 .

[15]  Investigation of the liquid metal ion source cluster beam constituents and their role in the properties of the deposited film , 1987 .

[16]  Roger Fabian W. Pease,et al.  Scanning tunneling microscope as a micromechanical tool , 1987 .

[17]  Wilson,et al.  Observation of atomic corrugation on Au(111) by scanning tunneling microscopy. , 1987, Physical review letters.

[18]  R. Silver,et al.  Direct writing of submicron metallic features with a scanning tunneling microscope , 1987 .

[19]  L. Nd Resistance of a one-atom contact in the scanning tunneling microscope. , 1987 .

[20]  R. Pease,et al.  Exposure of calcium fluoride resist with the scanning tunneling microscope , 1987 .

[21]  R. P. Andres,et al.  Direct imaging of 13‐Å‐diam Au clusters using scanning tunneling microscopy , 1987 .

[22]  Brian S. Swartzentruber,et al.  Atomic-scale surface modifications using a tunnelling microscope , 1987 .

[23]  R. Hamers,et al.  The STM learning curve and where it may take us * , 1988 .

[24]  Roger Fabian W. Pease,et al.  Imaging and modification of polymers by scanning tunneling and atomic force microscopy , 1988 .

[25]  W. Kaiser,et al.  Nano‐machining of gold and semiconductor surfaces , 1988 .

[26]  Seokwon Yoon,et al.  Direct writing of 10 nm features with the scanning tunneling microscope , 1988 .

[27]  M. Isaacson,et al.  Super-resolution imaging with near-field scanning optical microscopy (NSOM) , 1988 .

[28]  J. Clarke,et al.  Scanning tunneling microscopy of silver, gold, and aluminum monomers and small clusters on graphite , 1988 .

[29]  D. P. Kern,et al.  Direct deposition of 10‐nm metallic features with the scanning tunneling microscope , 1988 .

[30]  Jaklevic,et al.  Scanning-tunneling-microscope observation of surface diffusion on an atomic scale: Au on Au(111). , 1988, Physical review letters.

[31]  Paul K. Hansma,et al.  Creating And Observing Surface Features With A Scanning Tunneling Microscope , 1988, Photonics West - Lasers and Applications in Science and Engineering.

[32]  C. Quate,et al.  Atomic resolution with the atomic force microscope on conductors and nonconductors , 1988 .

[33]  Roger Fabian W. Pease,et al.  Lift‐off metallization using poly(methyl methacrylate) exposed with a scanning tunneling microscope , 1988 .

[34]  L. Swanson,et al.  Scanning tunneling microscope liquid‐metal ion source for microfabrication , 1988 .

[35]  H. Güntherodt,et al.  Topography and local modification of the HoBa2Cu3O7−x(001) surface using scanning tunneling microscopy , 1988 .

[36]  Paul K. Hansma,et al.  Tunneling microscopy, lithography, and surface diffusion on an easily prepared, atomically flat gold surface , 1988 .

[37]  H. Kumar Wickramasinghe,et al.  High‐resolution capacitance measurement and potentiometry by force microscopy , 1988 .

[38]  E. Kratschmer,et al.  Nanostructure technology , 1988 .

[39]  Hans-Werner Fink,et al.  Point source for ions and electrons , 1988 .

[40]  T. Jing,et al.  Imaging of layered semiconductor clusters by scanning tunneling microscopy: Bi2S3 on graphite and gold substrates , 1988 .

[41]  P. Hansma,et al.  Atomic resolution atomic force microscopy of graphite and the ‘‘native oxide’’ on silicon , 1988 .

[42]  N. Garcia,et al.  Surface modification in the nanometer range by the scanning tunneling microscope , 1988 .

[43]  Summary Abstract: Qualitative description of cluster and droplet emission from liquid‐metal ion sources , 1988 .

[44]  J. Frommer,et al.  Molecular manipulation using a tunnelling microscope , 1988, Nature.

[45]  J. Bokor,et al.  Direct force measurement in scanning tunneling microscopy , 1988 .

[46]  Allen J. Bard,et al.  Scanning Electrochemical Microscopy High‐Resolution Deposition and Etching of Metals , 1989 .

[47]  Yan Li,et al.  Writing nanometer-scale symbols in gold using the scanning tunneling microscope , 1989 .

[48]  T. Albrecht Advances in Atomic Force Microscopy and Scanning Tunneling Microscopy , 1989 .

[49]  Calvin F. Quate,et al.  Nanometer‐scale hole formation on graphite using a scanning tunneling microscope , 1989 .

[50]  R. Reifenberger,et al.  Studies of individual nanometer‐sized metallic clusters using scanning tunneling microscopy, field emission, and field ion microscopy , 1989 .

[51]  Fischer Uc,et al.  Observation of single-particle plasmons by near-field optical microscopy. , 1989 .

[52]  R. P. Andres,et al.  Response to ‘‘Comment on ‘Writing nanometer‐scale symbols in gold using the scanning tunneling microscope’ ’’[Appl. Phys. Lett. 55, 2366 (1989)] , 1989 .

[53]  P. West,et al.  Surface modification of a‐Si:H with a scanning tunneling microscope operated in air , 1989 .

[54]  C. Quate,et al.  Characterization of gold surfaces for use as substrates in scanning tunneling microscopy studies , 1989 .

[55]  R. Pease,et al.  Comment on ‘‘Writing nanometer‐scale symbols in gold using the scanning tunneling microscope’’[Appl. Phys. Lett. 54, 1424 (1989)] , 1989 .

[56]  Comment on writing nanometer-scale symbols in gold using the scanning tunneling microscope. Response , 1989 .

[57]  J. Dieleman,et al.  Direct writing in Si with a scanning tunneling microscope , 1989 .

[58]  A novel scanning tunneling microscope controlled field emission microlens electron source , 1989 .

[59]  Brune,et al.  Atomic-resolution imaging of close-packed metal surfaces by scanning tunneling microscopy. , 1989, Physical review letters.

[60]  K Lieberman,et al.  A Light Source Smaller Than the Optical Wavelength , 1990, Science.

[61]  C. Roberts,et al.  Surface modification and atomic resolution on a vacuum-annealed gold foil in air by scanning tunneling microscopy , 1990 .

[62]  K. Terashima,et al.  Fabrication of nucleation sites for nanometer size selective deposition by scanning tunneling microscope , 1990 .

[63]  J. Rabe,et al.  Reactive graphite etch and the structure of an adsorbed organic monolayer—a scanning tunneling microscopy study , 1990 .

[64]  H. Itoh,et al.  Scanning tunneling microscopy observation of MoS2 surface and gold clusters deposited on MoS2 surface , 1990 .

[65]  D. Eigler,et al.  Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.

[66]  Christie R. K. Marrian,et al.  Low‐voltage electron beam lithography with a scanning tunneling microscope , 1990 .

[67]  E. Ehrichs,et al.  Etching of silicon (111) with the scanning tunneling microscope , 1990 .

[68]  Douglas J. Thomson,et al.  Mechanisms for the deposition of nanometer‐sized structures from organic fluids using the scanning tunneling microscope , 1990 .