Seminormal stratified default theories

In this paper we study seminormal default theories. The notions of stratification and strong stratification are introduced. The properties of stratified and strongly stratified default theories are investigated. We show how to determine if a given seminormal default theory is strongly stratified and how to find the finest partition into strata. We present algorithms for computing extensions for stratified seminormal default theories and analyze their complexity.

[1]  Adrian Walker,et al.  Towards a Theory of Declarative Knowledge , 1988, Foundations of Deductive Databases and Logic Programming..

[2]  Krzysztof R. Apt,et al.  Arithmetic classification of perfect models of stratified programs , 1991, Fundam. Informaticae.

[3]  Michael Gelfond,et al.  On Stratified Autoepistemic Theories , 1987, AAAI.

[4]  Victor W. Marek,et al.  Autoepistemic logic , 1991, JACM.

[5]  Christine Froidevaux,et al.  General Logical Databases and Programs: Default Logic Semantics and Stratification , 1991, Inf. Comput..

[6]  Victor W. Marek,et al.  Nonmonotonic logic - context-dependent reasoning , 1997, Artificial intelligence.

[7]  Bart Selman,et al.  Hard Problems for Simple Default Logics , 1989, Artif. Intell..

[8]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..