A modular framework for iterative combinatorial auctions

We describe a modular elicitation framework for iterative combinatorial auctions. The framework includes proxy agents, each of which can adopt an individualized bidding language to represent partial value information of a bidder. The framework leverages algorithms from query learning to elicit value information via bids as the auction progresses. The approach reduces the multi-agent elicitation problem to isolated, single-agent learning problems, with competitive equilibrium prices used to facilitate auction clearing even without complete learning.

[1]  David C. Parkes,et al.  iBundle: an efficient ascending price bundle auction , 1999, EC '99.

[2]  Avrim Blum,et al.  Preference Elicitation and Query Learning , 2004, J. Mach. Learn. Res..

[3]  Yoav Shoham,et al.  Towards a universal test suite for combinatorial auction algorithms , 2000, EC '00.

[4]  Eric Horvitz,et al.  Reflections on Challenges and Promises of Mixed-Initiative Interaction , 2007, AI Mag..

[5]  Linda Sellie,et al.  Learning sparse multivariate polynomials over a field with queries and counterexamples , 1993, COLT '93.

[6]  Sven de Vries,et al.  On ascending Vickrey auctions for heterogeneous objects , 2007, J. Econ. Theory.

[7]  Dana Angluin,et al.  Queries and concept learning , 1988, Machine Learning.

[8]  Tuomas Sandholm,et al.  Expressive commerce and its application to sourcing: how we conducted $35 billion of generalized combinatorial auctions , 2007, AI Mag..

[9]  David C. Parkes,et al.  Applying learning algorithms to preference elicitation , 2004, EC '04.

[10]  Lawrence M. Ausubel,et al.  Ascending Auctions with Package Bidding , 2002 .

[11]  Noam Nisan,et al.  On the computational power of iterative auctions , 2005, EC '05.

[12]  Alex Kulesza,et al.  TBBL: A Tree-Based Bidding Language for Iterative Combinatorial Exchanges , 2005 .

[13]  Noam Nisan,et al.  Bidding and allocation in combinatorial auctions , 2000, EC '00.

[14]  Tuomas Sandholm,et al.  Expressive Commerce and Its Application to Sourcing , 2006, AAAI.

[15]  David C. Parkes,et al.  A modular framework for multi-agent preference elicitation , 2007 .

[16]  Craig Boutilier,et al.  Bidding Languages for Combinatorial Auctions , 2001, IJCAI.

[17]  David C. Parkes,et al.  Iterative Combinatorial Auctions: Theory and Practice , 2000, AAAI/IAAI.

[18]  David C. Parkes,et al.  More on the Power of Demand Queries in Combinatorial Auctions: Learning Atomic Languages and Handling Incentives , 2005, IJCAI.

[19]  Umesh V. Vazirani,et al.  An Introduction to Computational Learning Theory , 1994 .

[20]  Subhash Suri,et al.  Side constraints and non-price attributes in markets , 2006, Games Econ. Behav..